Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization
A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffus...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2012-06, Vol.22 (11), p.2295-2302 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2302 |
---|---|
container_issue | 11 |
container_start_page | 2295 |
container_title | Advanced functional materials |
container_volume | 22 |
creator | Shelton, Christopher T. Kotula, Paul G. Brennecka, Geoff L. Lam, Peter G. Meyer, Kelsey E. Maria, Jon-Paul Gibbons, Brady J. Ihlefeld, Jon F. |
description | A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers.
Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively. |
doi_str_mv | 10.1002/adfm.201103077 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201103077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201103077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExHdup4_UJxH22GWpMoj8ogBH3EzmcdFRltKOkXBXy8EQ9y5umdxv5OcD6FrSlqUEHaj3bxoMUIp4USIE9SgKU0jTlj79Jjpyzm6COGdECoEjxtoli2g8Fbn-Rb3y6J8gyWU64CzsljlsMGTjXeAZwu_xF2fFwE_eY0HxaoqP8Hh6dqEutI14BHUuw7_rWtfLi_R2VznAa5-bxM9du9mWT8aTnqDrDOMbMy5iAxzNCYyTVJqwWg5d9IlRjKqEyvbzDpnqIHdGu44iBQkl4wYZqyhjseJ5U3UOvTaqgyhgrlaVb7Q1VZRovZO1N6JOjrZAfIAfPkctv98q85td_SXjQ6sDzVsjqyuPlQquEjU87insnh6_xCPpXrlP0nSdjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><source>Access via Wiley Online Library</source><creator>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</creator><creatorcontrib>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</creatorcontrib><description>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers.
Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201103077</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>electrodes ; electronic structures ; ferroics ; functional coatings ; thin films</subject><ispartof>Advanced functional materials, 2012-06, Vol.22 (11), p.2295-2302</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</citedby><cites>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201103077$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201103077$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shelton, Christopher T.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Brennecka, Geoff L.</creatorcontrib><creatorcontrib>Lam, Peter G.</creatorcontrib><creatorcontrib>Meyer, Kelsey E.</creatorcontrib><creatorcontrib>Maria, Jon-Paul</creatorcontrib><creatorcontrib>Gibbons, Brady J.</creatorcontrib><creatorcontrib>Ihlefeld, Jon F.</creatorcontrib><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers.
Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</description><subject>electrodes</subject><subject>electronic structures</subject><subject>ferroics</subject><subject>functional coatings</subject><subject>thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExHdup4_UJxH22GWpMoj8ogBH3EzmcdFRltKOkXBXy8EQ9y5umdxv5OcD6FrSlqUEHaj3bxoMUIp4USIE9SgKU0jTlj79Jjpyzm6COGdECoEjxtoli2g8Fbn-Rb3y6J8gyWU64CzsljlsMGTjXeAZwu_xF2fFwE_eY0HxaoqP8Hh6dqEutI14BHUuw7_rWtfLi_R2VznAa5-bxM9du9mWT8aTnqDrDOMbMy5iAxzNCYyTVJqwWg5d9IlRjKqEyvbzDpnqIHdGu44iBQkl4wYZqyhjseJ5U3UOvTaqgyhgrlaVb7Q1VZRovZO1N6JOjrZAfIAfPkctv98q85td_SXjQ6sDzVsjqyuPlQquEjU87insnh6_xCPpXrlP0nSdjs</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Shelton, Christopher T.</creator><creator>Kotula, Paul G.</creator><creator>Brennecka, Geoff L.</creator><creator>Lam, Peter G.</creator><creator>Meyer, Kelsey E.</creator><creator>Maria, Jon-Paul</creator><creator>Gibbons, Brady J.</creator><creator>Ihlefeld, Jon F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120606</creationdate><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><author>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>electrodes</topic><topic>electronic structures</topic><topic>ferroics</topic><topic>functional coatings</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Christopher T.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Brennecka, Geoff L.</creatorcontrib><creatorcontrib>Lam, Peter G.</creatorcontrib><creatorcontrib>Meyer, Kelsey E.</creatorcontrib><creatorcontrib>Maria, Jon-Paul</creatorcontrib><creatorcontrib>Gibbons, Brady J.</creatorcontrib><creatorcontrib>Ihlefeld, Jon F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Christopher T.</au><au>Kotula, Paul G.</au><au>Brennecka, Geoff L.</au><au>Lam, Peter G.</au><au>Meyer, Kelsey E.</au><au>Maria, Jon-Paul</au><au>Gibbons, Brady J.</au><au>Ihlefeld, Jon F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>22</volume><issue>11</issue><spage>2295</spage><epage>2302</epage><pages>2295-2302</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers.
Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201103077</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2012-06, Vol.22 (11), p.2295-2302 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201103077 |
source | Access via Wiley Online Library |
subjects | electrodes electronic structures ferroics functional coatings thin films |
title | Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Homogeneous%20Complex%20Oxide%20Thin%20Films%20Via%20Improved%20Substrate%20Metallization&rft.jtitle=Advanced%20functional%20materials&rft.au=Shelton,%20Christopher%20T.&rft.date=2012-06-06&rft.volume=22&rft.issue=11&rft.spage=2295&rft.epage=2302&rft.pages=2295-2302&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201103077&rft_dat=%3Cwiley_cross%3EADFM201103077%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |