Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization

A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2012-06, Vol.22 (11), p.2295-2302
Hauptverfasser: Shelton, Christopher T., Kotula, Paul G., Brennecka, Geoff L., Lam, Peter G., Meyer, Kelsey E., Maria, Jon-Paul, Gibbons, Brady J., Ihlefeld, Jon F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2302
container_issue 11
container_start_page 2295
container_title Advanced functional materials
container_volume 22
creator Shelton, Christopher T.
Kotula, Paul G.
Brennecka, Geoff L.
Lam, Peter G.
Meyer, Kelsey E.
Maria, Jon-Paul
Gibbons, Brady J.
Ihlefeld, Jon F.
description A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers. Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.
doi_str_mv 10.1002/adfm.201103077
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201103077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201103077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExHdup4_UJxH22GWpMoj8ogBH3EzmcdFRltKOkXBXy8EQ9y5umdxv5OcD6FrSlqUEHaj3bxoMUIp4USIE9SgKU0jTlj79Jjpyzm6COGdECoEjxtoli2g8Fbn-Rb3y6J8gyWU64CzsljlsMGTjXeAZwu_xF2fFwE_eY0HxaoqP8Hh6dqEutI14BHUuw7_rWtfLi_R2VznAa5-bxM9du9mWT8aTnqDrDOMbMy5iAxzNCYyTVJqwWg5d9IlRjKqEyvbzDpnqIHdGu44iBQkl4wYZqyhjseJ5U3UOvTaqgyhgrlaVb7Q1VZRovZO1N6JOjrZAfIAfPkctv98q85td_SXjQ6sDzVsjqyuPlQquEjU87insnh6_xCPpXrlP0nSdjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><source>Access via Wiley Online Library</source><creator>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</creator><creatorcontrib>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</creatorcontrib><description>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers. Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201103077</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>electrodes ; electronic structures ; ferroics ; functional coatings ; thin films</subject><ispartof>Advanced functional materials, 2012-06, Vol.22 (11), p.2295-2302</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</citedby><cites>FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201103077$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201103077$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shelton, Christopher T.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Brennecka, Geoff L.</creatorcontrib><creatorcontrib>Lam, Peter G.</creatorcontrib><creatorcontrib>Meyer, Kelsey E.</creatorcontrib><creatorcontrib>Maria, Jon-Paul</creatorcontrib><creatorcontrib>Gibbons, Brady J.</creatorcontrib><creatorcontrib>Ihlefeld, Jon F.</creatorcontrib><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers. Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</description><subject>electrodes</subject><subject>electronic structures</subject><subject>ferroics</subject><subject>functional coatings</subject><subject>thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExHdup4_UJxH22GWpMoj8ogBH3EzmcdFRltKOkXBXy8EQ9y5umdxv5OcD6FrSlqUEHaj3bxoMUIp4USIE9SgKU0jTlj79Jjpyzm6COGdECoEjxtoli2g8Fbn-Rb3y6J8gyWU64CzsljlsMGTjXeAZwu_xF2fFwE_eY0HxaoqP8Hh6dqEutI14BHUuw7_rWtfLi_R2VznAa5-bxM9du9mWT8aTnqDrDOMbMy5iAxzNCYyTVJqwWg5d9IlRjKqEyvbzDpnqIHdGu44iBQkl4wYZqyhjseJ5U3UOvTaqgyhgrlaVb7Q1VZRovZO1N6JOjrZAfIAfPkctv98q85td_SXjQ6sDzVsjqyuPlQquEjU87insnh6_xCPpXrlP0nSdjs</recordid><startdate>20120606</startdate><enddate>20120606</enddate><creator>Shelton, Christopher T.</creator><creator>Kotula, Paul G.</creator><creator>Brennecka, Geoff L.</creator><creator>Lam, Peter G.</creator><creator>Meyer, Kelsey E.</creator><creator>Maria, Jon-Paul</creator><creator>Gibbons, Brady J.</creator><creator>Ihlefeld, Jon F.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120606</creationdate><title>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</title><author>Shelton, Christopher T. ; Kotula, Paul G. ; Brennecka, Geoff L. ; Lam, Peter G. ; Meyer, Kelsey E. ; Maria, Jon-Paul ; Gibbons, Brady J. ; Ihlefeld, Jon F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-b2d14096561ceba9fd9d5b921a5c982cddb1be0303d3e76e93920b2bcb1d345c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>electrodes</topic><topic>electronic structures</topic><topic>ferroics</topic><topic>functional coatings</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Christopher T.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Brennecka, Geoff L.</creatorcontrib><creatorcontrib>Lam, Peter G.</creatorcontrib><creatorcontrib>Meyer, Kelsey E.</creatorcontrib><creatorcontrib>Maria, Jon-Paul</creatorcontrib><creatorcontrib>Gibbons, Brady J.</creatorcontrib><creatorcontrib>Ihlefeld, Jon F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Christopher T.</au><au>Kotula, Paul G.</au><au>Brennecka, Geoff L.</au><au>Lam, Peter G.</au><au>Meyer, Kelsey E.</au><au>Maria, Jon-Paul</au><au>Gibbons, Brady J.</au><au>Ihlefeld, Jon F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-06-06</date><risdate>2012</risdate><volume>22</volume><issue>11</issue><spage>2295</spage><epage>2302</epage><pages>2295-2302</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A long‐standing challenge to the widespread application of complex oxide thin films is the stable and robust integration of noble metal electrodes, such as platinum, which remains the optimal choice for numerous applications. By considering both work of adhesion and stability against chemical diffusion, it is demonstrated that the use of an improved adhesion layer (namely, ZnO) between the silicon substrate and platinum bottom electrode enables dramatic improvements in the properties of the overlying functional oxide films. Using BaTiO3 and Pb(Zr,Ti)O3 films as test cases, it is shown that the use of ZnO as the adhesion layer leads directly to increased process temperature capabilities and dramatic improvements in chemical homogeneity of the films. These result in significant property enhancements (e.g., 300% improvement to bulk‐like permittivity for the BaTiO3 films) of oxide films prepared on Pt/ZnO as compared to the conventional Pt/Ti and Pt/TiOx stacks. A comparison of electrical, structural, and chemical properties that demonstrate the impact of adhesion layer chemistry on the chemical homogeneity of the overlying complex oxide is presented. Collectively, this analysis shows that in addition to the simple need for adhesion, metal‐oxide layers between noble metals and silicon can have tremendous chemical impact on the terminal complex oxide layers. Through selection of an appropriate adhesion layer for platinum on silicon, an ability to process complex oxide thin films devoid of chemical gradients is demonstrated. The chemically homogeneous films display significantly enhanced electronic and dielectric responses across two separate material systems, PZT and BaTiO3, with nearly 35% increases in remanent polarization and 300% increases in permittivity observed, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201103077</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2012-06, Vol.22 (11), p.2295-2302
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201103077
source Access via Wiley Online Library
subjects electrodes
electronic structures
ferroics
functional coatings
thin films
title Chemically Homogeneous Complex Oxide Thin Films Via Improved Substrate Metallization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Homogeneous%20Complex%20Oxide%20Thin%20Films%20Via%20Improved%20Substrate%20Metallization&rft.jtitle=Advanced%20functional%20materials&rft.au=Shelton,%20Christopher%20T.&rft.date=2012-06-06&rft.volume=22&rft.issue=11&rft.spage=2295&rft.epage=2302&rft.pages=2295-2302&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201103077&rft_dat=%3Cwiley_cross%3EADFM201103077%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true