The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship

The utilization of the reversible chemical and physical sorption of water on solids provides a new thermal energy storage concept with a great potential for lossless long‐term storage. The performance of microporous aluminophosphates in heat storage applications is highlighted by a comparative therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2012-05, Vol.22 (9), p.1952-1957
Hauptverfasser: Ristić, Alenka, Logar, Nataša Zabukovec, Henninger, Stefan K., Kaučič, Venčeslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1957
container_issue 9
container_start_page 1952
container_title Advanced functional materials
container_volume 22
creator Ristić, Alenka
Logar, Nataša Zabukovec
Henninger, Stefan K.
Kaučič, Venčeslav
description The utilization of the reversible chemical and physical sorption of water on solids provides a new thermal energy storage concept with a great potential for lossless long‐term storage. The performance of microporous aluminophosphates in heat storage applications is highlighted by a comparative thermogravimetric and calorimetric study of three known materials (SAPO‐34, AlPO4‐18, APO‐Tric) and is correlated with their structural features. The maximum water sorption capacity is similar for all three samples and results in a stored energy density of 240 kWh m−3 in the 40–140 °C range. The elemental composition influences the gradual (silicoaluminophosphate SAPO‐34) or sudden (aluminophosphates AlPO4‐18, APO‐Tric) water uptake, with the latter being favourable in storage systems. The driving force for the determined sorption process is the formation of highly ordered water clusters in the pores, which is enabled by rapid and reversible changes in the Al coordination and optimal pore diameters. The ease with which changes in the Al coordination can occur in APO‐Tric is related to the use of the fluoride route in the synthesis. The understanding of these fundamental structure/sorption relationships forms an excellent basis for predicting the storage potential of numerous known or new microporous aluminophosphates and other porous materials from their crystal structures. A model that predicts the heat storage potential of numerous known or new microporous aluminophosphates is proposed based on a comparative thermogravimetric and calorimetric study of three known structures. The formation of highly ordered water clusters in the pores is determined to be a driving force for sudden water uptake in a narrow relative pressure range.
doi_str_mv 10.1002/adfm.201102734
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201102734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_NV2B2893_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-87a199f7088a5cfa138f6967c1e06caac88a48cb662441e1d87eff3f4a49e1683</originalsourceid><addsrcrecordid>eNqFkE9PwkAQxRujiYhePe8XKO52y3brDVHQBJAI_rltxmUWqm232S1BvoEf2xIM8eZpJpP3e5P3guCS0Q6jNLqChSk6EWWMRgmPj4IWE0yEnEby-LCzt9PgzPsPSlnSiFrB93yFZIrOWFdAqZFYQ2YF5Hk4tQ7JONPOVtbZtSe9fF1kpa1W1lcrqNGTrCQjuwnnWFTooF43wMzm4MhdiW65JbPaOljiNdk9mdVurXeacNpYoqu35AlzqDNb-lVWnQcnBnKPF7-zHTwP7ub9-3D0OHzo90ah5imPQ5kAS1OTUCmhqw0wLo1IRaIZUqEBdHOPpX4XIopjhmwhEzSGmxjiFJmQvB109r5NMO8dGlW5rAC3VYyqXY9q16M69NgA6R7YZDlu_1Gr3u1g_JcN92zma_w6sOA-lUh40lWvk6GavEQ3kUy5GvMfMeKJfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship</title><source>Access via Wiley Online Library</source><creator>Ristić, Alenka ; Logar, Nataša Zabukovec ; Henninger, Stefan K. ; Kaučič, Venčeslav</creator><creatorcontrib>Ristić, Alenka ; Logar, Nataša Zabukovec ; Henninger, Stefan K. ; Kaučič, Venčeslav</creatorcontrib><description>The utilization of the reversible chemical and physical sorption of water on solids provides a new thermal energy storage concept with a great potential for lossless long‐term storage. The performance of microporous aluminophosphates in heat storage applications is highlighted by a comparative thermogravimetric and calorimetric study of three known materials (SAPO‐34, AlPO4‐18, APO‐Tric) and is correlated with their structural features. The maximum water sorption capacity is similar for all three samples and results in a stored energy density of 240 kWh m−3 in the 40–140 °C range. The elemental composition influences the gradual (silicoaluminophosphate SAPO‐34) or sudden (aluminophosphates AlPO4‐18, APO‐Tric) water uptake, with the latter being favourable in storage systems. The driving force for the determined sorption process is the formation of highly ordered water clusters in the pores, which is enabled by rapid and reversible changes in the Al coordination and optimal pore diameters. The ease with which changes in the Al coordination can occur in APO‐Tric is related to the use of the fluoride route in the synthesis. The understanding of these fundamental structure/sorption relationships forms an excellent basis for predicting the storage potential of numerous known or new microporous aluminophosphates and other porous materials from their crystal structures. A model that predicts the heat storage potential of numerous known or new microporous aluminophosphates is proposed based on a comparative thermogravimetric and calorimetric study of three known structures. The formation of highly ordered water clusters in the pores is determined to be a driving force for sudden water uptake in a narrow relative pressure range.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201102734</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>aluminophosphates ; heat storage ; microporous materials ; solar energy ; structure-property relationships</subject><ispartof>Advanced functional materials, 2012-05, Vol.22 (9), p.1952-1957</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-87a199f7088a5cfa138f6967c1e06caac88a48cb662441e1d87eff3f4a49e1683</citedby><cites>FETCH-LOGICAL-c3934-87a199f7088a5cfa138f6967c1e06caac88a48cb662441e1d87eff3f4a49e1683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201102734$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201102734$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ristić, Alenka</creatorcontrib><creatorcontrib>Logar, Nataša Zabukovec</creatorcontrib><creatorcontrib>Henninger, Stefan K.</creatorcontrib><creatorcontrib>Kaučič, Venčeslav</creatorcontrib><title>The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The utilization of the reversible chemical and physical sorption of water on solids provides a new thermal energy storage concept with a great potential for lossless long‐term storage. The performance of microporous aluminophosphates in heat storage applications is highlighted by a comparative thermogravimetric and calorimetric study of three known materials (SAPO‐34, AlPO4‐18, APO‐Tric) and is correlated with their structural features. The maximum water sorption capacity is similar for all three samples and results in a stored energy density of 240 kWh m−3 in the 40–140 °C range. The elemental composition influences the gradual (silicoaluminophosphate SAPO‐34) or sudden (aluminophosphates AlPO4‐18, APO‐Tric) water uptake, with the latter being favourable in storage systems. The driving force for the determined sorption process is the formation of highly ordered water clusters in the pores, which is enabled by rapid and reversible changes in the Al coordination and optimal pore diameters. The ease with which changes in the Al coordination can occur in APO‐Tric is related to the use of the fluoride route in the synthesis. The understanding of these fundamental structure/sorption relationships forms an excellent basis for predicting the storage potential of numerous known or new microporous aluminophosphates and other porous materials from their crystal structures. A model that predicts the heat storage potential of numerous known or new microporous aluminophosphates is proposed based on a comparative thermogravimetric and calorimetric study of three known structures. The formation of highly ordered water clusters in the pores is determined to be a driving force for sudden water uptake in a narrow relative pressure range.</description><subject>aluminophosphates</subject><subject>heat storage</subject><subject>microporous materials</subject><subject>solar energy</subject><subject>structure-property relationships</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwkAQxRujiYhePe8XKO52y3brDVHQBJAI_rltxmUWqm232S1BvoEf2xIM8eZpJpP3e5P3guCS0Q6jNLqChSk6EWWMRgmPj4IWE0yEnEby-LCzt9PgzPsPSlnSiFrB93yFZIrOWFdAqZFYQ2YF5Hk4tQ7JONPOVtbZtSe9fF1kpa1W1lcrqNGTrCQjuwnnWFTooF43wMzm4MhdiW65JbPaOljiNdk9mdVurXeacNpYoqu35AlzqDNb-lVWnQcnBnKPF7-zHTwP7ub9-3D0OHzo90ah5imPQ5kAS1OTUCmhqw0wLo1IRaIZUqEBdHOPpX4XIopjhmwhEzSGmxjiFJmQvB109r5NMO8dGlW5rAC3VYyqXY9q16M69NgA6R7YZDlu_1Gr3u1g_JcN92zma_w6sOA-lUh40lWvk6GavEQ3kUy5GvMfMeKJfg</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Ristić, Alenka</creator><creator>Logar, Nataša Zabukovec</creator><creator>Henninger, Stefan K.</creator><creator>Kaučič, Venčeslav</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120509</creationdate><title>The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship</title><author>Ristić, Alenka ; Logar, Nataša Zabukovec ; Henninger, Stefan K. ; Kaučič, Venčeslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-87a199f7088a5cfa138f6967c1e06caac88a48cb662441e1d87eff3f4a49e1683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>aluminophosphates</topic><topic>heat storage</topic><topic>microporous materials</topic><topic>solar energy</topic><topic>structure-property relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ristić, Alenka</creatorcontrib><creatorcontrib>Logar, Nataša Zabukovec</creatorcontrib><creatorcontrib>Henninger, Stefan K.</creatorcontrib><creatorcontrib>Kaučič, Venčeslav</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ristić, Alenka</au><au>Logar, Nataša Zabukovec</au><au>Henninger, Stefan K.</au><au>Kaučič, Venčeslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-05-09</date><risdate>2012</risdate><volume>22</volume><issue>9</issue><spage>1952</spage><epage>1957</epage><pages>1952-1957</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The utilization of the reversible chemical and physical sorption of water on solids provides a new thermal energy storage concept with a great potential for lossless long‐term storage. The performance of microporous aluminophosphates in heat storage applications is highlighted by a comparative thermogravimetric and calorimetric study of three known materials (SAPO‐34, AlPO4‐18, APO‐Tric) and is correlated with their structural features. The maximum water sorption capacity is similar for all three samples and results in a stored energy density of 240 kWh m−3 in the 40–140 °C range. The elemental composition influences the gradual (silicoaluminophosphate SAPO‐34) or sudden (aluminophosphates AlPO4‐18, APO‐Tric) water uptake, with the latter being favourable in storage systems. The driving force for the determined sorption process is the formation of highly ordered water clusters in the pores, which is enabled by rapid and reversible changes in the Al coordination and optimal pore diameters. The ease with which changes in the Al coordination can occur in APO‐Tric is related to the use of the fluoride route in the synthesis. The understanding of these fundamental structure/sorption relationships forms an excellent basis for predicting the storage potential of numerous known or new microporous aluminophosphates and other porous materials from their crystal structures. A model that predicts the heat storage potential of numerous known or new microporous aluminophosphates is proposed based on a comparative thermogravimetric and calorimetric study of three known structures. The formation of highly ordered water clusters in the pores is determined to be a driving force for sudden water uptake in a narrow relative pressure range.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201102734</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2012-05, Vol.22 (9), p.1952-1957
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201102734
source Access via Wiley Online Library
subjects aluminophosphates
heat storage
microporous materials
solar energy
structure-property relationships
title The Performance of Small-Pore Microporous Aluminophosphates in Low-Temperature Solar Energy Storage: The Structure-Property Relationship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Performance%20of%20Small-Pore%20Microporous%20Aluminophosphates%20in%20Low-Temperature%20Solar%20Energy%20Storage:%20The%20Structure-Property%20Relationship&rft.jtitle=Advanced%20functional%20materials&rft.au=Risti%C4%87,%20Alenka&rft.date=2012-05-09&rft.volume=22&rft.issue=9&rft.spage=1952&rft.epage=1957&rft.pages=1952-1957&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201102734&rft_dat=%3Cistex_cross%3Eark_67375_WNG_NV2B2893_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true