Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells

Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of researc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2012-05, Vol.22 (10), p.2160-2166
Hauptverfasser: Grancini, Giulia, Santosh Kumar, R. Sai, Abrusci, Agnese, Yip, Hin-Lap, Li, Chang-Zhi, Jen, Alex-K. Y., Lanzani, Guglielmo, Snaith, Henry J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2166
container_issue 10
container_start_page 2160
container_title Advanced functional materials
container_volume 22
creator Grancini, Giulia
Santosh Kumar, R. Sai
Abrusci, Agnese
Yip, Hin-Lap
Li, Chang-Zhi
Jen, Alex-K. Y.
Lanzani, Guglielmo
Snaith, Henry J.
description Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics. Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.
doi_str_mv 10.1002/adfm.201102360
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201102360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201102360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhhujiYhuXc8LFOZSpnQJyM2AmIjBuJlM54KjQ2tmilK3vrhtaog7V-c_Oef7Fn8QXCPYQRDiLpd618EQIYgJhSdBC1FEQwJx__SY0dN5cOH9K4QojknUCr6Hee4Lk23BPNOOOyXBwmxfCjDj7kM1l7QEy9wqsbfcgck-E4XJM27NF68DyDVYqoJbsDoYqbr3uS13ylW-QjnNhfLAZGCstRFGZZW4TJ2R4CGvbSNlrb8MzjS3Xl39znbwOBmvR7NwsZrOR4NFKEhCYIj7GiaYJ1pIBKNYYkwSFSUCS9LXMkVaSR1RGPGU60hWW1_GMRW9tKepoCQi7aDTeIXLvXdKs3dndtyVDEFWV8jqCtmxwgpIGuDTWFX-880GN5PlXzZsWOMLdTiy3L0xGpO4xzZ3UwaHaHNL6DNbkx_T7Ie5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><source>Access via Wiley Online Library</source><creator>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</creator><creatorcontrib>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</creatorcontrib><description>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics. Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201102360</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>hybrid photovoltaic devices ; low-band-gap polymer ; polymer-metal oxide interfaces ; spectral response ; ultrafast spectroscopy</subject><ispartof>Advanced functional materials, 2012-05, Vol.22 (10), p.2160-2166</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</citedby><cites>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201102360$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201102360$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Grancini, Giulia</creatorcontrib><creatorcontrib>Santosh Kumar, R. Sai</creatorcontrib><creatorcontrib>Abrusci, Agnese</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Li, Chang-Zhi</creatorcontrib><creatorcontrib>Jen, Alex-K. Y.</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics. Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</description><subject>hybrid photovoltaic devices</subject><subject>low-band-gap polymer</subject><subject>polymer-metal oxide interfaces</subject><subject>spectral response</subject><subject>ultrafast spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwkAUhhujiYhuXc8LFOZSpnQJyM2AmIjBuJlM54KjQ2tmilK3vrhtaog7V-c_Oef7Fn8QXCPYQRDiLpd618EQIYgJhSdBC1FEQwJx__SY0dN5cOH9K4QojknUCr6Hee4Lk23BPNOOOyXBwmxfCjDj7kM1l7QEy9wqsbfcgck-E4XJM27NF68DyDVYqoJbsDoYqbr3uS13ylW-QjnNhfLAZGCstRFGZZW4TJ2R4CGvbSNlrb8MzjS3Xl39znbwOBmvR7NwsZrOR4NFKEhCYIj7GiaYJ1pIBKNYYkwSFSUCS9LXMkVaSR1RGPGU60hWW1_GMRW9tKepoCQi7aDTeIXLvXdKs3dndtyVDEFWV8jqCtmxwgpIGuDTWFX-880GN5PlXzZsWOMLdTiy3L0xGpO4xzZ3UwaHaHNL6DNbkx_T7Ie5</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Grancini, Giulia</creator><creator>Santosh Kumar, R. Sai</creator><creator>Abrusci, Agnese</creator><creator>Yip, Hin-Lap</creator><creator>Li, Chang-Zhi</creator><creator>Jen, Alex-K. Y.</creator><creator>Lanzani, Guglielmo</creator><creator>Snaith, Henry J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120523</creationdate><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><author>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>hybrid photovoltaic devices</topic><topic>low-band-gap polymer</topic><topic>polymer-metal oxide interfaces</topic><topic>spectral response</topic><topic>ultrafast spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grancini, Giulia</creatorcontrib><creatorcontrib>Santosh Kumar, R. Sai</creatorcontrib><creatorcontrib>Abrusci, Agnese</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Li, Chang-Zhi</creatorcontrib><creatorcontrib>Jen, Alex-K. Y.</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grancini, Giulia</au><au>Santosh Kumar, R. Sai</au><au>Abrusci, Agnese</au><au>Yip, Hin-Lap</au><au>Li, Chang-Zhi</au><au>Jen, Alex-K. Y.</au><au>Lanzani, Guglielmo</au><au>Snaith, Henry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>22</volume><issue>10</issue><spage>2160</spage><epage>2166</epage><pages>2160-2166</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics. Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201102360</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2012-05, Vol.22 (10), p.2160-2166
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_201102360
source Access via Wiley Online Library
subjects hybrid photovoltaic devices
low-band-gap polymer
polymer-metal oxide interfaces
spectral response
ultrafast spectroscopy
title Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Infrared%20Light%20Harvesting%20by%20Molecular%20Functionalization%20of%20Metal%20Oxide/Polymer%20Interfaces%20in%20Efficient%20Hybrid%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Grancini,%20Giulia&rft.date=2012-05-23&rft.volume=22&rft.issue=10&rft.spage=2160&rft.epage=2166&rft.pages=2160-2166&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201102360&rft_dat=%3Cwiley_cross%3EADFM201102360%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true