Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells
Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of researc...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2012-05, Vol.22 (10), p.2160-2166 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2166 |
---|---|
container_issue | 10 |
container_start_page | 2160 |
container_title | Advanced functional materials |
container_volume | 22 |
creator | Grancini, Giulia Santosh Kumar, R. Sai Abrusci, Agnese Yip, Hin-Lap Li, Chang-Zhi Jen, Alex-K. Y. Lanzani, Guglielmo Snaith, Henry J. |
description | Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.
Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency. |
doi_str_mv | 10.1002/adfm.201102360 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_201102360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADFM201102360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</originalsourceid><addsrcrecordid>eNqFkMtOwkAUhhujiYhuXc8LFOZSpnQJyM2AmIjBuJlM54KjQ2tmilK3vrhtaog7V-c_Oef7Fn8QXCPYQRDiLpd618EQIYgJhSdBC1FEQwJx__SY0dN5cOH9K4QojknUCr6Hee4Lk23BPNOOOyXBwmxfCjDj7kM1l7QEy9wqsbfcgck-E4XJM27NF68DyDVYqoJbsDoYqbr3uS13ylW-QjnNhfLAZGCstRFGZZW4TJ2R4CGvbSNlrb8MzjS3Xl39znbwOBmvR7NwsZrOR4NFKEhCYIj7GiaYJ1pIBKNYYkwSFSUCS9LXMkVaSR1RGPGU60hWW1_GMRW9tKepoCQi7aDTeIXLvXdKs3dndtyVDEFWV8jqCtmxwgpIGuDTWFX-880GN5PlXzZsWOMLdTiy3L0xGpO4xzZ3UwaHaHNL6DNbkx_T7Ie5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><source>Access via Wiley Online Library</source><creator>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</creator><creatorcontrib>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</creatorcontrib><description>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.
Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201102360</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>hybrid photovoltaic devices ; low-band-gap polymer ; polymer-metal oxide interfaces ; spectral response ; ultrafast spectroscopy</subject><ispartof>Advanced functional materials, 2012-05, Vol.22 (10), p.2160-2166</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</citedby><cites>FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201102360$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201102360$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Grancini, Giulia</creatorcontrib><creatorcontrib>Santosh Kumar, R. Sai</creatorcontrib><creatorcontrib>Abrusci, Agnese</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Li, Chang-Zhi</creatorcontrib><creatorcontrib>Jen, Alex-K. Y.</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.
Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</description><subject>hybrid photovoltaic devices</subject><subject>low-band-gap polymer</subject><subject>polymer-metal oxide interfaces</subject><subject>spectral response</subject><subject>ultrafast spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwkAUhhujiYhuXc8LFOZSpnQJyM2AmIjBuJlM54KjQ2tmilK3vrhtaog7V-c_Oef7Fn8QXCPYQRDiLpd618EQIYgJhSdBC1FEQwJx__SY0dN5cOH9K4QojknUCr6Hee4Lk23BPNOOOyXBwmxfCjDj7kM1l7QEy9wqsbfcgck-E4XJM27NF68DyDVYqoJbsDoYqbr3uS13ylW-QjnNhfLAZGCstRFGZZW4TJ2R4CGvbSNlrb8MzjS3Xl39znbwOBmvR7NwsZrOR4NFKEhCYIj7GiaYJ1pIBKNYYkwSFSUCS9LXMkVaSR1RGPGU60hWW1_GMRW9tKepoCQi7aDTeIXLvXdKs3dndtyVDEFWV8jqCtmxwgpIGuDTWFX-880GN5PlXzZsWOMLdTiy3L0xGpO4xzZ3UwaHaHNL6DNbkx_T7Ie5</recordid><startdate>20120523</startdate><enddate>20120523</enddate><creator>Grancini, Giulia</creator><creator>Santosh Kumar, R. Sai</creator><creator>Abrusci, Agnese</creator><creator>Yip, Hin-Lap</creator><creator>Li, Chang-Zhi</creator><creator>Jen, Alex-K. Y.</creator><creator>Lanzani, Guglielmo</creator><creator>Snaith, Henry J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120523</creationdate><title>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</title><author>Grancini, Giulia ; Santosh Kumar, R. Sai ; Abrusci, Agnese ; Yip, Hin-Lap ; Li, Chang-Zhi ; Jen, Alex-K. Y. ; Lanzani, Guglielmo ; Snaith, Henry J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3930-28f092a9fcd1047d2239e49c2d38fdb1fedf4604abaf4dfed8d776c5b5f6c6343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>hybrid photovoltaic devices</topic><topic>low-band-gap polymer</topic><topic>polymer-metal oxide interfaces</topic><topic>spectral response</topic><topic>ultrafast spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grancini, Giulia</creatorcontrib><creatorcontrib>Santosh Kumar, R. Sai</creatorcontrib><creatorcontrib>Abrusci, Agnese</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Li, Chang-Zhi</creatorcontrib><creatorcontrib>Jen, Alex-K. Y.</creatorcontrib><creatorcontrib>Lanzani, Guglielmo</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grancini, Giulia</au><au>Santosh Kumar, R. Sai</au><au>Abrusci, Agnese</au><au>Yip, Hin-Lap</au><au>Li, Chang-Zhi</au><au>Jen, Alex-K. Y.</au><au>Lanzani, Guglielmo</au><au>Snaith, Henry J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2012-05-23</date><risdate>2012</risdate><volume>22</volume><issue>10</issue><spage>2160</spage><epage>2166</epage><pages>2160-2166</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano‐scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low‐band gap polymer(poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b0]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadia‐zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by “co‐functionalizing” the TiO2 surface with the electron acceptor and an organic dye‐sensitizer, panchromatic spectral photoresponse is achieved in the visible to near‐IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.
Hybrid solar cells based on a low band gap polymer infiltrated in TiO2 mesoporous oxide are reported. The TiO2/polymer interface is multiply functionalized with a fullerene‐based self‐assembled monolayer to drive efficient charge separation and with an organic dye to lead panchromatic photoresponse in the visible and near IR region and improved efficiency.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201102360</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2012-05, Vol.22 (10), p.2160-2166 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adfm_201102360 |
source | Access via Wiley Online Library |
subjects | hybrid photovoltaic devices low-band-gap polymer polymer-metal oxide interfaces spectral response ultrafast spectroscopy |
title | Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Infrared%20Light%20Harvesting%20by%20Molecular%20Functionalization%20of%20Metal%20Oxide/Polymer%20Interfaces%20in%20Efficient%20Hybrid%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Grancini,%20Giulia&rft.date=2012-05-23&rft.volume=22&rft.issue=10&rft.spage=2160&rft.epage=2166&rft.pages=2160-2166&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201102360&rft_dat=%3Cwiley_cross%3EADFM201102360%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |