Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)

The cover illustrates two‐step fabrication of metal micro‐ and nanostructures on self‐assembled monolayers (SAMs) by pulsed laser deposition and electroless deposition. Metal–SAM–metal junctions are a key component of molecular electronic devices. Pt was deposited in a micropattern by pulsed laser d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2006-07, Vol.16 (10), p.n/a
Hauptverfasser: Speets, E. A., te Riele, P., van den Boogaart, M. A. F., Doeswijk, L. M., Ravoo, B. J., Rijnders, G., Brugger, J., Reinhoudt, D. N., Blank, D. H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced functional materials
container_volume 16
creator Speets, E. A.
te Riele, P.
van den Boogaart, M. A. F.
Doeswijk, L. M.
Ravoo, B. J.
Rijnders, G.
Brugger, J.
Reinhoudt, D. N.
Blank, D. H. A.
description The cover illustrates two‐step fabrication of metal micro‐ and nanostructures on self‐assembled monolayers (SAMs) by pulsed laser deposition and electroless deposition. Metal–SAM–metal junctions are a key component of molecular electronic devices. Pt was deposited in a micropattern by pulsed laser deposition through a stencil. XPS maps show how the Pt pattern is developed into a Cu pattern using electroless deposition as reported by Ravoo, Brugger, Reinhoudt, Blank, and co‐workers on p. 1337. The Cu pattern can also be observed by optical microscopy (background). Patterns of noble‐metal structures on top of self‐assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano‐ and microstencils. In the second approach, noble‐metal cluster patterns deposited through nano‐ and microstencils are used as catalysts for selective electroless deposition (ELD) of Cu. Cu structures are grown on SAMs on both Au and SiO2 substrates and are subsequently analyzed using X‐ray photoelectron spectroscopy element mapping, atomic force microscopy, and optical microscopy. The combination of PLD through stencils on SAMs followed by ELD is a new method for the creation of (sub)‐micrometer‐sized metal structures on top of SAMs. This method minimizes the gas‐phase deposition step, which is often responsible for damage to, or electrical shorts through, the SAM. Metal structures and arrays of metal islands on self‐assembled monolayers (SAMs) have been prepared by a sequential combination of pulsed laser deposition through nanostencils and electroless deposition (see figure and cover). This method minimizes the gas‐phase deposition step, which is often responsible for damage to the self‐assembled monolayers, and is therefore useful for the fabrication of metal–SAM–metal junctions without shorts.
doi_str_mv 10.1002/adfm.200690036
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adfm_200690036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_TP9J2LCP_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1276-cc86fec9be6b3def3d77b14b3d9e1aaef9bb4a4ca0352486018b38605aa5b2883</originalsourceid><addsrcrecordid>eNqFkM9v2jAUx6NpldaxXXv2cT0ktePgJLshKGwVdJFG1d6sZ-dlzWpiZIe2_HP922pgQtx2ek_294feJ4ouGE0YpekV1M0qSSkVJaVcfIjOmWAi5jQtPh539vAp-uz9X0pZnvPsPHob22d0pGp1v3H4nUytW0Hf2o7YhiywB0NuobMxga4mi1Y7u4a-R9d5EjS_0TTxyHtcKYPh33bWwBadJ2pLqo3x4XEOPhRMcG19uw9ePjq7-fO4z_U9dro1fh9_bVD3zhr0_lT_bVQ_J2S66XSfkAWE8oQwerW79PJLdNZAqPn6bw6iu-n1cvwjnv-a_RyP5rFmaS5irQvRoC4VCsVrbHid54plYS-RAWBTKpVBpoHyYZoVgrJC8TCGAEOVFgUfRMkhNwDw3mEj165dgdtKRuWOvtzRl0f6wVAeDC-twe1_1HI0mS5OvfHB2wY8r0cvuCcpcp4P5f3tTC6r8iadjytZ8XetJZsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)</title><source>Wiley Online Library All Journals</source><creator>Speets, E. A. ; te Riele, P. ; van den Boogaart, M. A. F. ; Doeswijk, L. M. ; Ravoo, B. J. ; Rijnders, G. ; Brugger, J. ; Reinhoudt, D. N. ; Blank, D. H. A.</creator><creatorcontrib>Speets, E. A. ; te Riele, P. ; van den Boogaart, M. A. F. ; Doeswijk, L. M. ; Ravoo, B. J. ; Rijnders, G. ; Brugger, J. ; Reinhoudt, D. N. ; Blank, D. H. A.</creatorcontrib><description>The cover illustrates two‐step fabrication of metal micro‐ and nanostructures on self‐assembled monolayers (SAMs) by pulsed laser deposition and electroless deposition. Metal–SAM–metal junctions are a key component of molecular electronic devices. Pt was deposited in a micropattern by pulsed laser deposition through a stencil. XPS maps show how the Pt pattern is developed into a Cu pattern using electroless deposition as reported by Ravoo, Brugger, Reinhoudt, Blank, and co‐workers on p. 1337. The Cu pattern can also be observed by optical microscopy (background). Patterns of noble‐metal structures on top of self‐assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano‐ and microstencils. In the second approach, noble‐metal cluster patterns deposited through nano‐ and microstencils are used as catalysts for selective electroless deposition (ELD) of Cu. Cu structures are grown on SAMs on both Au and SiO2 substrates and are subsequently analyzed using X‐ray photoelectron spectroscopy element mapping, atomic force microscopy, and optical microscopy. The combination of PLD through stencils on SAMs followed by ELD is a new method for the creation of (sub)‐micrometer‐sized metal structures on top of SAMs. This method minimizes the gas‐phase deposition step, which is often responsible for damage to, or electrical shorts through, the SAM. Metal structures and arrays of metal islands on self‐assembled monolayers (SAMs) have been prepared by a sequential combination of pulsed laser deposition through nanostencils and electroless deposition (see figure and cover). This method minimizes the gas‐phase deposition step, which is often responsible for damage to the self‐assembled monolayers, and is therefore useful for the fabrication of metal–SAM–metal junctions without shorts.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200690036</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Electroless deposition ; metal structures ; Micropatterning ; Nanopatterning ; Nanostencils ; Patterning ; Patterning, metal structures ; Pulsed laser deposition ; Self-assembled monolayers ; Thin films</subject><ispartof>Advanced functional materials, 2006-07, Vol.16 (10), p.n/a</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.200690036$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200690036$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Speets, E. A.</creatorcontrib><creatorcontrib>te Riele, P.</creatorcontrib><creatorcontrib>van den Boogaart, M. A. F.</creatorcontrib><creatorcontrib>Doeswijk, L. M.</creatorcontrib><creatorcontrib>Ravoo, B. J.</creatorcontrib><creatorcontrib>Rijnders, G.</creatorcontrib><creatorcontrib>Brugger, J.</creatorcontrib><creatorcontrib>Reinhoudt, D. N.</creatorcontrib><creatorcontrib>Blank, D. H. A.</creatorcontrib><title>Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The cover illustrates two‐step fabrication of metal micro‐ and nanostructures on self‐assembled monolayers (SAMs) by pulsed laser deposition and electroless deposition. Metal–SAM–metal junctions are a key component of molecular electronic devices. Pt was deposited in a micropattern by pulsed laser deposition through a stencil. XPS maps show how the Pt pattern is developed into a Cu pattern using electroless deposition as reported by Ravoo, Brugger, Reinhoudt, Blank, and co‐workers on p. 1337. The Cu pattern can also be observed by optical microscopy (background). Patterns of noble‐metal structures on top of self‐assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano‐ and microstencils. In the second approach, noble‐metal cluster patterns deposited through nano‐ and microstencils are used as catalysts for selective electroless deposition (ELD) of Cu. Cu structures are grown on SAMs on both Au and SiO2 substrates and are subsequently analyzed using X‐ray photoelectron spectroscopy element mapping, atomic force microscopy, and optical microscopy. The combination of PLD through stencils on SAMs followed by ELD is a new method for the creation of (sub)‐micrometer‐sized metal structures on top of SAMs. This method minimizes the gas‐phase deposition step, which is often responsible for damage to, or electrical shorts through, the SAM. Metal structures and arrays of metal islands on self‐assembled monolayers (SAMs) have been prepared by a sequential combination of pulsed laser deposition through nanostencils and electroless deposition (see figure and cover). This method minimizes the gas‐phase deposition step, which is often responsible for damage to the self‐assembled monolayers, and is therefore useful for the fabrication of metal–SAM–metal junctions without shorts.</description><subject>Electroless deposition</subject><subject>metal structures</subject><subject>Micropatterning</subject><subject>Nanopatterning</subject><subject>Nanostencils</subject><subject>Patterning</subject><subject>Patterning, metal structures</subject><subject>Pulsed laser deposition</subject><subject>Self-assembled monolayers</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM9v2jAUx6NpldaxXXv2cT0ktePgJLshKGwVdJFG1d6sZ-dlzWpiZIe2_HP922pgQtx2ek_294feJ4ouGE0YpekV1M0qSSkVJaVcfIjOmWAi5jQtPh539vAp-uz9X0pZnvPsPHob22d0pGp1v3H4nUytW0Hf2o7YhiywB0NuobMxga4mi1Y7u4a-R9d5EjS_0TTxyHtcKYPh33bWwBadJ2pLqo3x4XEOPhRMcG19uw9ePjq7-fO4z_U9dro1fh9_bVD3zhr0_lT_bVQ_J2S66XSfkAWE8oQwerW79PJLdNZAqPn6bw6iu-n1cvwjnv-a_RyP5rFmaS5irQvRoC4VCsVrbHid54plYS-RAWBTKpVBpoHyYZoVgrJC8TCGAEOVFgUfRMkhNwDw3mEj165dgdtKRuWOvtzRl0f6wVAeDC-twe1_1HI0mS5OvfHB2wY8r0cvuCcpcp4P5f3tTC6r8iadjytZ8XetJZsM</recordid><startdate>20060704</startdate><enddate>20060704</enddate><creator>Speets, E. A.</creator><creator>te Riele, P.</creator><creator>van den Boogaart, M. A. F.</creator><creator>Doeswijk, L. M.</creator><creator>Ravoo, B. J.</creator><creator>Rijnders, G.</creator><creator>Brugger, J.</creator><creator>Reinhoudt, D. N.</creator><creator>Blank, D. H. A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060704</creationdate><title>Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)</title><author>Speets, E. A. ; te Riele, P. ; van den Boogaart, M. A. F. ; Doeswijk, L. M. ; Ravoo, B. J. ; Rijnders, G. ; Brugger, J. ; Reinhoudt, D. N. ; Blank, D. H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1276-cc86fec9be6b3def3d77b14b3d9e1aaef9bb4a4ca0352486018b38605aa5b2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Electroless deposition</topic><topic>metal structures</topic><topic>Micropatterning</topic><topic>Nanopatterning</topic><topic>Nanostencils</topic><topic>Patterning</topic><topic>Patterning, metal structures</topic><topic>Pulsed laser deposition</topic><topic>Self-assembled monolayers</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speets, E. A.</creatorcontrib><creatorcontrib>te Riele, P.</creatorcontrib><creatorcontrib>van den Boogaart, M. A. F.</creatorcontrib><creatorcontrib>Doeswijk, L. M.</creatorcontrib><creatorcontrib>Ravoo, B. J.</creatorcontrib><creatorcontrib>Rijnders, G.</creatorcontrib><creatorcontrib>Brugger, J.</creatorcontrib><creatorcontrib>Reinhoudt, D. N.</creatorcontrib><creatorcontrib>Blank, D. H. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speets, E. A.</au><au>te Riele, P.</au><au>van den Boogaart, M. A. F.</au><au>Doeswijk, L. M.</au><au>Ravoo, B. J.</au><au>Rijnders, G.</au><au>Brugger, J.</au><au>Reinhoudt, D. N.</au><au>Blank, D. H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2006-07-04</date><risdate>2006</risdate><volume>16</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The cover illustrates two‐step fabrication of metal micro‐ and nanostructures on self‐assembled monolayers (SAMs) by pulsed laser deposition and electroless deposition. Metal–SAM–metal junctions are a key component of molecular electronic devices. Pt was deposited in a micropattern by pulsed laser deposition through a stencil. XPS maps show how the Pt pattern is developed into a Cu pattern using electroless deposition as reported by Ravoo, Brugger, Reinhoudt, Blank, and co‐workers on p. 1337. The Cu pattern can also be observed by optical microscopy (background). Patterns of noble‐metal structures on top of self‐assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano‐ and microstencils. In the second approach, noble‐metal cluster patterns deposited through nano‐ and microstencils are used as catalysts for selective electroless deposition (ELD) of Cu. Cu structures are grown on SAMs on both Au and SiO2 substrates and are subsequently analyzed using X‐ray photoelectron spectroscopy element mapping, atomic force microscopy, and optical microscopy. The combination of PLD through stencils on SAMs followed by ELD is a new method for the creation of (sub)‐micrometer‐sized metal structures on top of SAMs. This method minimizes the gas‐phase deposition step, which is often responsible for damage to, or electrical shorts through, the SAM. Metal structures and arrays of metal islands on self‐assembled monolayers (SAMs) have been prepared by a sequential combination of pulsed laser deposition through nanostencils and electroless deposition (see figure and cover). This method minimizes the gas‐phase deposition step, which is often responsible for damage to the self‐assembled monolayers, and is therefore useful for the fabrication of metal–SAM–metal junctions without shorts.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200690036</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2006-07, Vol.16 (10), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_crossref_primary_10_1002_adfm_200690036
source Wiley Online Library All Journals
subjects Electroless deposition
metal structures
Micropatterning
Nanopatterning
Nanostencils
Patterning
Patterning, metal structures
Pulsed laser deposition
Self-assembled monolayers
Thin films
title Cover Picture: Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition (Adv. Funct. Mater. 10/2006)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cover%20Picture:%20Formation%20of%20Metal%20Nano-%20and%20Micropatterns%20on%20Self-Assembled%20Monolayers%20by%20Pulsed%20Laser%20Deposition%20Through%20Nanostencils%20and%20Electroless%20Deposition%20(Adv.%20Funct.%20Mater.%2010/2006)&rft.jtitle=Advanced%20functional%20materials&rft.au=Speets,%20E.%E2%80%89A.&rft.date=2006-07-04&rft.volume=16&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200690036&rft_dat=%3Cistex_cross%3Eark_67375_WNG_TP9J2LCP_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true