On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys
Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF all...
Gespeichert in:
Veröffentlicht in: | Advanced engineering materials 2022-10, Vol.24 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced engineering materials |
container_volume | 24 |
creator | Scheibel, Franziska Lauhoff, Christian Riegg, Stefan Krooß, Philipp Bruder, Enrico Adabifiroozjaei, Esmaeil Molina-Luna, Leopoldo Böhm, Stefan Chumlyakov, Yury I. Niendorf, Thomas Gutfleisch, Oliver |
description | Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications.
Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior. |
doi_str_mv | 10.1002/adem.202200069 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202200069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202200069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMvsPpPgjcZMxKqWt1FIkukeOfW6N8iU7AXVjZ-Qf8ktIVAQjy93p9Dyn04vQLSUTSgi7kxrKCSOMEUJEcoZGNGLTgIkwPu_nkMcBFZG4RFfevxBCKaF8hD62FW4PgFdlI1WLa4NTrW1rXwFvZNWZftk5W-3xk6sVeA8e1ydjY5Wrfeu6gQAsK90b-wpaqwa4AdfagTZ4Vn-9fz7aviwkfj7IppehrN0RL6HzBTicFkV99NfowsjCw81PH6Pdw3w3Wwbr7WI1S9eB4ixJgiTnoJhMYq6YJrnRnMYKyBQgDnWuBGcQqVySXDFqzFRpEeso1KHQIs-N4GM0OZ0d_vcOTNY4W0p3zCjJhiSzIcnsN8leSE7Cmy3g-A-dpffzzZ_7DfJ7fTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</creator><creatorcontrib>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</creatorcontrib><description>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications.
Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202200069</identifier><language>eng</language><subject>additive manufacturing ; direct microstructure designs ; first-order magnetostructural transitions ; magnetic characterizations ; shape memory alloys</subject><ispartof>Advanced engineering materials, 2022-10, Vol.24 (10), p.n/a</ispartof><rights>2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</citedby><cites>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</cites><orcidid>0000-0001-7981-0871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202200069$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202200069$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Lauhoff, Christian</creatorcontrib><creatorcontrib>Riegg, Stefan</creatorcontrib><creatorcontrib>Krooß, Philipp</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Adabifiroozjaei, Esmaeil</creatorcontrib><creatorcontrib>Molina-Luna, Leopoldo</creatorcontrib><creatorcontrib>Böhm, Stefan</creatorcontrib><creatorcontrib>Chumlyakov, Yury I.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><title>Advanced engineering materials</title><description>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications.
Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</description><subject>additive manufacturing</subject><subject>direct microstructure designs</subject><subject>first-order magnetostructural transitions</subject><subject>magnetic characterizations</subject><subject>shape memory alloys</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhi0EEqWwMvsPpPgjcZMxKqWt1FIkukeOfW6N8iU7AXVjZ-Qf8ktIVAQjy93p9Dyn04vQLSUTSgi7kxrKCSOMEUJEcoZGNGLTgIkwPu_nkMcBFZG4RFfevxBCKaF8hD62FW4PgFdlI1WLa4NTrW1rXwFvZNWZftk5W-3xk6sVeA8e1ydjY5Wrfeu6gQAsK90b-wpaqwa4AdfagTZ4Vn-9fz7aviwkfj7IppehrN0RL6HzBTicFkV99NfowsjCw81PH6Pdw3w3Wwbr7WI1S9eB4ixJgiTnoJhMYq6YJrnRnMYKyBQgDnWuBGcQqVySXDFqzFRpEeso1KHQIs-N4GM0OZ0d_vcOTNY4W0p3zCjJhiSzIcnsN8leSE7Cmy3g-A-dpffzzZ_7DfJ7fTo</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Scheibel, Franziska</creator><creator>Lauhoff, Christian</creator><creator>Riegg, Stefan</creator><creator>Krooß, Philipp</creator><creator>Bruder, Enrico</creator><creator>Adabifiroozjaei, Esmaeil</creator><creator>Molina-Luna, Leopoldo</creator><creator>Böhm, Stefan</creator><creator>Chumlyakov, Yury I.</creator><creator>Niendorf, Thomas</creator><creator>Gutfleisch, Oliver</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid></search><sort><creationdate>202210</creationdate><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><author>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive manufacturing</topic><topic>direct microstructure designs</topic><topic>first-order magnetostructural transitions</topic><topic>magnetic characterizations</topic><topic>shape memory alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Lauhoff, Christian</creatorcontrib><creatorcontrib>Riegg, Stefan</creatorcontrib><creatorcontrib>Krooß, Philipp</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Adabifiroozjaei, Esmaeil</creatorcontrib><creatorcontrib>Molina-Luna, Leopoldo</creatorcontrib><creatorcontrib>Böhm, Stefan</creatorcontrib><creatorcontrib>Chumlyakov, Yury I.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheibel, Franziska</au><au>Lauhoff, Christian</au><au>Riegg, Stefan</au><au>Krooß, Philipp</au><au>Bruder, Enrico</au><au>Adabifiroozjaei, Esmaeil</au><au>Molina-Luna, Leopoldo</au><au>Böhm, Stefan</au><au>Chumlyakov, Yury I.</au><au>Niendorf, Thomas</au><au>Gutfleisch, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-10</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications.
Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</abstract><doi>10.1002/adem.202200069</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-1656 |
ispartof | Advanced engineering materials, 2022-10, Vol.24 (10), p.n/a |
issn | 1438-1656 1527-2648 |
language | eng |
recordid | cdi_crossref_primary_10_1002_adem_202200069 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | additive manufacturing direct microstructure designs first-order magnetostructural transitions magnetic characterizations shape memory alloys |
title | On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Impact%20of%20Additive%20Manufacturing%20Processes%20on%20the%20Microstructure%20and%20Magnetic%20Properties%20of%20Co%E2%80%93Ni%E2%80%93Ga%20Shape%20Memory%20Heusler%20Alloys&rft.jtitle=Advanced%20engineering%20materials&rft.au=Scheibel,%20Franziska&rft.date=2022-10&rft.volume=24&rft.issue=10&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202200069&rft_dat=%3Cwiley_cross%3EADEM202200069%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |