On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys

Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2022-10, Vol.24 (10), p.n/a
Hauptverfasser: Scheibel, Franziska, Lauhoff, Christian, Riegg, Stefan, Krooß, Philipp, Bruder, Enrico, Adabifiroozjaei, Esmaeil, Molina-Luna, Leopoldo, Böhm, Stefan, Chumlyakov, Yury I., Niendorf, Thomas, Gutfleisch, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced engineering materials
container_volume 24
creator Scheibel, Franziska
Lauhoff, Christian
Riegg, Stefan
Krooß, Philipp
Bruder, Enrico
Adabifiroozjaei, Esmaeil
Molina-Luna, Leopoldo
Böhm, Stefan
Chumlyakov, Yury I.
Niendorf, Thomas
Gutfleisch, Oliver
description Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications. Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.
doi_str_mv 10.1002/adem.202200069
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202200069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202200069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMvsPpPgjcZMxKqWt1FIkukeOfW6N8iU7AXVjZ-Qf8ktIVAQjy93p9Dyn04vQLSUTSgi7kxrKCSOMEUJEcoZGNGLTgIkwPu_nkMcBFZG4RFfevxBCKaF8hD62FW4PgFdlI1WLa4NTrW1rXwFvZNWZftk5W-3xk6sVeA8e1ydjY5Wrfeu6gQAsK90b-wpaqwa4AdfagTZ4Vn-9fz7aviwkfj7IppehrN0RL6HzBTicFkV99NfowsjCw81PH6Pdw3w3Wwbr7WI1S9eB4ixJgiTnoJhMYq6YJrnRnMYKyBQgDnWuBGcQqVySXDFqzFRpEeso1KHQIs-N4GM0OZ0d_vcOTNY4W0p3zCjJhiSzIcnsN8leSE7Cmy3g-A-dpffzzZ_7DfJ7fTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</creator><creatorcontrib>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</creatorcontrib><description>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications. Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202200069</identifier><language>eng</language><subject>additive manufacturing ; direct microstructure designs ; first-order magnetostructural transitions ; magnetic characterizations ; shape memory alloys</subject><ispartof>Advanced engineering materials, 2022-10, Vol.24 (10), p.n/a</ispartof><rights>2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</citedby><cites>FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</cites><orcidid>0000-0001-7981-0871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202200069$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202200069$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Lauhoff, Christian</creatorcontrib><creatorcontrib>Riegg, Stefan</creatorcontrib><creatorcontrib>Krooß, Philipp</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Adabifiroozjaei, Esmaeil</creatorcontrib><creatorcontrib>Molina-Luna, Leopoldo</creatorcontrib><creatorcontrib>Böhm, Stefan</creatorcontrib><creatorcontrib>Chumlyakov, Yury I.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><title>Advanced engineering materials</title><description>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications. Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</description><subject>additive manufacturing</subject><subject>direct microstructure designs</subject><subject>first-order magnetostructural transitions</subject><subject>magnetic characterizations</subject><subject>shape memory alloys</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhi0EEqWwMvsPpPgjcZMxKqWt1FIkukeOfW6N8iU7AXVjZ-Qf8ktIVAQjy93p9Dyn04vQLSUTSgi7kxrKCSOMEUJEcoZGNGLTgIkwPu_nkMcBFZG4RFfevxBCKaF8hD62FW4PgFdlI1WLa4NTrW1rXwFvZNWZftk5W-3xk6sVeA8e1ydjY5Wrfeu6gQAsK90b-wpaqwa4AdfagTZ4Vn-9fz7aviwkfj7IppehrN0RL6HzBTicFkV99NfowsjCw81PH6Pdw3w3Wwbr7WI1S9eB4ixJgiTnoJhMYq6YJrnRnMYKyBQgDnWuBGcQqVySXDFqzFRpEeso1KHQIs-N4GM0OZ0d_vcOTNY4W0p3zCjJhiSzIcnsN8leSE7Cmy3g-A-dpffzzZ_7DfJ7fTo</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Scheibel, Franziska</creator><creator>Lauhoff, Christian</creator><creator>Riegg, Stefan</creator><creator>Krooß, Philipp</creator><creator>Bruder, Enrico</creator><creator>Adabifiroozjaei, Esmaeil</creator><creator>Molina-Luna, Leopoldo</creator><creator>Böhm, Stefan</creator><creator>Chumlyakov, Yury I.</creator><creator>Niendorf, Thomas</creator><creator>Gutfleisch, Oliver</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid></search><sort><creationdate>202210</creationdate><title>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</title><author>Scheibel, Franziska ; Lauhoff, Christian ; Riegg, Stefan ; Krooß, Philipp ; Bruder, Enrico ; Adabifiroozjaei, Esmaeil ; Molina-Luna, Leopoldo ; Böhm, Stefan ; Chumlyakov, Yury I. ; Niendorf, Thomas ; Gutfleisch, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3299-9b3ec2a983c2d0bfd318ce07ee84dbc632e5cba0bc21ff7cd68d54d46d6bbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>additive manufacturing</topic><topic>direct microstructure designs</topic><topic>first-order magnetostructural transitions</topic><topic>magnetic characterizations</topic><topic>shape memory alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheibel, Franziska</creatorcontrib><creatorcontrib>Lauhoff, Christian</creatorcontrib><creatorcontrib>Riegg, Stefan</creatorcontrib><creatorcontrib>Krooß, Philipp</creatorcontrib><creatorcontrib>Bruder, Enrico</creatorcontrib><creatorcontrib>Adabifiroozjaei, Esmaeil</creatorcontrib><creatorcontrib>Molina-Luna, Leopoldo</creatorcontrib><creatorcontrib>Böhm, Stefan</creatorcontrib><creatorcontrib>Chumlyakov, Yury I.</creatorcontrib><creatorcontrib>Niendorf, Thomas</creatorcontrib><creatorcontrib>Gutfleisch, Oliver</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheibel, Franziska</au><au>Lauhoff, Christian</au><au>Riegg, Stefan</au><au>Krooß, Philipp</au><au>Bruder, Enrico</au><au>Adabifiroozjaei, Esmaeil</au><au>Molina-Luna, Leopoldo</au><au>Böhm, Stefan</au><au>Chumlyakov, Yury I.</au><au>Niendorf, Thomas</au><au>Gutfleisch, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-10</date><risdate>2022</risdate><volume>24</volume><issue>10</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Microstructure design allows to prevent intergranular cracking and premature failure in Co–Ni–Ga shape memory alloys. Favorable grain boundary configurations are established using additive manufacturing techniques, namely, direct energy deposition (DED) and laser powder bed fusion (L‐PBF). L‐PBF allows to establish a columnar grain structure. In the Co–Ni–Ga alloy processed by DED, a microstructure with strong ⟨001⟩ texture is obtained. In line with optimized microstructures, the general transformation behavior is essential for performance. Transition parameters such as transition temperature and thermal hysteresis depend on chemical composition, homogeneity, and presence of precipitates. However, these parameters are highly dependent on the processing method used. Herein, the first‐order magnetostructural transformation and magnetization properties of Co–Ni–Ga processed by DED and L‐PBF are compared with single‐crystalline and as‐cast material. In the alloy processed by L‐PBF, Ga evaporation and extensive formation of the ferromagnetic Co‐rich γ'‐phase are observed, promoting a very wide transformation range and large thermal hysteresis. In comparison, following DED, the material is characterized by minor chemical inhomogeneity and transition and magnetization behavior being similar to that of a single crystal. This clearly renders DED‐processed Co–Ni–Ga to become a promising candidate material for future shape memory applications. Microstructure design of Co–Ni–Ga shape memory alloys by additive manufacturing can be used to prevent intergranular cracking and premature failure. The comparison of microstructure, composition, and magnetic properties of Co–Ni–Ga Heusler alloy processed by direct energy deposition and laser powder bed fusion shows large differences in terms of precipitate formation and martensitic transformation behavior.</abstract><doi>10.1002/adem.202200069</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7981-0871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2022-10, Vol.24 (10), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202200069
source Wiley Online Library Journals Frontfile Complete
subjects additive manufacturing
direct microstructure designs
first-order magnetostructural transitions
magnetic characterizations
shape memory alloys
title On the Impact of Additive Manufacturing Processes on the Microstructure and Magnetic Properties of Co–Ni–Ga Shape Memory Heusler Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Impact%20of%20Additive%20Manufacturing%20Processes%20on%20the%20Microstructure%20and%20Magnetic%20Properties%20of%20Co%E2%80%93Ni%E2%80%93Ga%20Shape%20Memory%20Heusler%20Alloys&rft.jtitle=Advanced%20engineering%20materials&rft.au=Scheibel,%20Franziska&rft.date=2022-10&rft.volume=24&rft.issue=10&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202200069&rft_dat=%3Cwiley_cross%3EADEM202200069%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true