Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction

A facile and efficient methodology is described for the solvothermal synthesis of size‐tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2022-06, Vol.24 (6), p.n/a
Hauptverfasser: Heilmann, Maria, Prinz, Carsten, Bienert, Ralf, Wendt, Robert, Kunkel, Benny, Radnik, Jörg, Hoell, Armin, Wohlrab, Sebastian, Guilherme Buzanich, Ana, Emmerling, Franziska
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced engineering materials
container_volume 24
creator Heilmann, Maria
Prinz, Carsten
Bienert, Ralf
Wendt, Robert
Kunkel, Benny
Radnik, Jörg
Hoell, Armin
Wohlrab, Sebastian
Guilherme Buzanich, Ana
Emmerling, Franziska
description A facile and efficient methodology is described for the solvothermal synthesis of size‐tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small‐angle X‐ray scattering, X‐ray absorption fine structure, and X‐ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni‐rich shell and an outer NiO shell. The SiO2‐supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. Size tunable bimetallic Ni–Cu nanoparticles are prepared by an adapted synthesis in a size range of 6 to 30 nanometers. The inner structure, consisting of a Cu–Ni alloy core, surrounded by a Ni‐rich shell, and a NiO shell, is revealed. These core‐shell‐shell nanoparticles show a pronounced selectivity for CO in the catalytic reduction of CO2 to CO.
doi_str_mv 10.1002/adem.202101308
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202101308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202101308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3298-b11496e5dde341a7e496de8a94b20a6e5ebfa8528e8658abc77bb29e0a4c5e7e3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1_MATZ2Z_E2WJdYq1Aqm4jLcJDd0JG3KzESJq76AINQn7JM4paJLV_fnfOcsjuNcMjpklPIrKHE55JQzyjwqjpweC3jk8tAXx3b3PeGyMAhPnTOtXyhle6znfKTyHXebz3m7grxGMpO7zTZpSdIo-96mC6xrMoNVswZlZFGj3m2-UqPawrQKB5ZbrhstjWxWAwKrkiRgoO4sSkaFka_SdKRqFDELJI_4ikojeQaDyoZPQJN0IStjFSj2EefOSQW1xouf2Xeebsbz5NadPkzuktHULTweCzdnzI9DDMoSPZ9BhPYqUUDs55yCFTCvQARcoAgDAXkRRXnOY6TgFwFG6PWd4SG3UI3WCqtsreQSVJcxmu3LzPZlZr9lWkN8MLzJGrt_6Gx0Pb7_834DVjGAmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heilmann, Maria ; Prinz, Carsten ; Bienert, Ralf ; Wendt, Robert ; Kunkel, Benny ; Radnik, Jörg ; Hoell, Armin ; Wohlrab, Sebastian ; Guilherme Buzanich, Ana ; Emmerling, Franziska</creator><creatorcontrib>Heilmann, Maria ; Prinz, Carsten ; Bienert, Ralf ; Wendt, Robert ; Kunkel, Benny ; Radnik, Jörg ; Hoell, Armin ; Wohlrab, Sebastian ; Guilherme Buzanich, Ana ; Emmerling, Franziska</creatorcontrib><description>A facile and efficient methodology is described for the solvothermal synthesis of size‐tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small‐angle X‐ray scattering, X‐ray absorption fine structure, and X‐ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni‐rich shell and an outer NiO shell. The SiO2‐supported NiCu core–shell NPs show pronounced selectivity of &gt;99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. Size tunable bimetallic Ni–Cu nanoparticles are prepared by an adapted synthesis in a size range of 6 to 30 nanometers. The inner structure, consisting of a Cu–Ni alloy core, surrounded by a Ni‐rich shell, and a NiO shell, is revealed. These core‐shell‐shell nanoparticles show a pronounced selectivity for CO in the catalytic reduction of CO2 to CO.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202101308</identifier><language>eng</language><subject>ASAXS ; catalysis ; core–shell ; nanoparticles ; reverse water–gas shift reaction ; TEM ; XAFS</subject><ispartof>Advanced engineering materials, 2022-06, Vol.24 (6), p.n/a</ispartof><rights>2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3298-b11496e5dde341a7e496de8a94b20a6e5ebfa8528e8658abc77bb29e0a4c5e7e3</citedby><cites>FETCH-LOGICAL-c3298-b11496e5dde341a7e496de8a94b20a6e5ebfa8528e8658abc77bb29e0a4c5e7e3</cites><orcidid>0000-0001-8586-5430 ; 0000-0003-0302-6815 ; 0000-0001-8528-0301 ; 0000-0002-7080-8393 ; 0000-0002-6754-485X ; 0000-0001-8480-4775 ; 0000-0001-5543-9924 ; 0000-0003-2324-3403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202101308$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202101308$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Heilmann, Maria</creatorcontrib><creatorcontrib>Prinz, Carsten</creatorcontrib><creatorcontrib>Bienert, Ralf</creatorcontrib><creatorcontrib>Wendt, Robert</creatorcontrib><creatorcontrib>Kunkel, Benny</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><creatorcontrib>Hoell, Armin</creatorcontrib><creatorcontrib>Wohlrab, Sebastian</creatorcontrib><creatorcontrib>Guilherme Buzanich, Ana</creatorcontrib><creatorcontrib>Emmerling, Franziska</creatorcontrib><title>Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction</title><title>Advanced engineering materials</title><description>A facile and efficient methodology is described for the solvothermal synthesis of size‐tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small‐angle X‐ray scattering, X‐ray absorption fine structure, and X‐ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni‐rich shell and an outer NiO shell. The SiO2‐supported NiCu core–shell NPs show pronounced selectivity of &gt;99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. Size tunable bimetallic Ni–Cu nanoparticles are prepared by an adapted synthesis in a size range of 6 to 30 nanometers. The inner structure, consisting of a Cu–Ni alloy core, surrounded by a Ni‐rich shell, and a NiO shell, is revealed. These core‐shell‐shell nanoparticles show a pronounced selectivity for CO in the catalytic reduction of CO2 to CO.</description><subject>ASAXS</subject><subject>catalysis</subject><subject>core–shell</subject><subject>nanoparticles</subject><subject>reverse water–gas shift reaction</subject><subject>TEM</subject><subject>XAFS</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AUhYMoWKtb1_MATZ2Z_E2WJdYq1Aqm4jLcJDd0JG3KzESJq76AINQn7JM4paJLV_fnfOcsjuNcMjpklPIrKHE55JQzyjwqjpweC3jk8tAXx3b3PeGyMAhPnTOtXyhle6znfKTyHXebz3m7grxGMpO7zTZpSdIo-96mC6xrMoNVswZlZFGj3m2-UqPawrQKB5ZbrhstjWxWAwKrkiRgoO4sSkaFka_SdKRqFDELJI_4ikojeQaDyoZPQJN0IStjFSj2EefOSQW1xouf2Xeebsbz5NadPkzuktHULTweCzdnzI9DDMoSPZ9BhPYqUUDs55yCFTCvQARcoAgDAXkRRXnOY6TgFwFG6PWd4SG3UI3WCqtsreQSVJcxmu3LzPZlZr9lWkN8MLzJGrt_6Gx0Pb7_834DVjGAmA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Heilmann, Maria</creator><creator>Prinz, Carsten</creator><creator>Bienert, Ralf</creator><creator>Wendt, Robert</creator><creator>Kunkel, Benny</creator><creator>Radnik, Jörg</creator><creator>Hoell, Armin</creator><creator>Wohlrab, Sebastian</creator><creator>Guilherme Buzanich, Ana</creator><creator>Emmerling, Franziska</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8586-5430</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8528-0301</orcidid><orcidid>https://orcid.org/0000-0002-7080-8393</orcidid><orcidid>https://orcid.org/0000-0002-6754-485X</orcidid><orcidid>https://orcid.org/0000-0001-8480-4775</orcidid><orcidid>https://orcid.org/0000-0001-5543-9924</orcidid><orcidid>https://orcid.org/0000-0003-2324-3403</orcidid></search><sort><creationdate>202206</creationdate><title>Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction</title><author>Heilmann, Maria ; Prinz, Carsten ; Bienert, Ralf ; Wendt, Robert ; Kunkel, Benny ; Radnik, Jörg ; Hoell, Armin ; Wohlrab, Sebastian ; Guilherme Buzanich, Ana ; Emmerling, Franziska</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3298-b11496e5dde341a7e496de8a94b20a6e5ebfa8528e8658abc77bb29e0a4c5e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASAXS</topic><topic>catalysis</topic><topic>core–shell</topic><topic>nanoparticles</topic><topic>reverse water–gas shift reaction</topic><topic>TEM</topic><topic>XAFS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heilmann, Maria</creatorcontrib><creatorcontrib>Prinz, Carsten</creatorcontrib><creatorcontrib>Bienert, Ralf</creatorcontrib><creatorcontrib>Wendt, Robert</creatorcontrib><creatorcontrib>Kunkel, Benny</creatorcontrib><creatorcontrib>Radnik, Jörg</creatorcontrib><creatorcontrib>Hoell, Armin</creatorcontrib><creatorcontrib>Wohlrab, Sebastian</creatorcontrib><creatorcontrib>Guilherme Buzanich, Ana</creatorcontrib><creatorcontrib>Emmerling, Franziska</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heilmann, Maria</au><au>Prinz, Carsten</au><au>Bienert, Ralf</au><au>Wendt, Robert</au><au>Kunkel, Benny</au><au>Radnik, Jörg</au><au>Hoell, Armin</au><au>Wohlrab, Sebastian</au><au>Guilherme Buzanich, Ana</au><au>Emmerling, Franziska</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-06</date><risdate>2022</risdate><volume>24</volume><issue>6</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>A facile and efficient methodology is described for the solvothermal synthesis of size‐tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small‐angle X‐ray scattering, X‐ray absorption fine structure, and X‐ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni‐rich shell and an outer NiO shell. The SiO2‐supported NiCu core–shell NPs show pronounced selectivity of &gt;99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. Size tunable bimetallic Ni–Cu nanoparticles are prepared by an adapted synthesis in a size range of 6 to 30 nanometers. The inner structure, consisting of a Cu–Ni alloy core, surrounded by a Ni‐rich shell, and a NiO shell, is revealed. These core‐shell‐shell nanoparticles show a pronounced selectivity for CO in the catalytic reduction of CO2 to CO.</abstract><doi>10.1002/adem.202101308</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8586-5430</orcidid><orcidid>https://orcid.org/0000-0003-0302-6815</orcidid><orcidid>https://orcid.org/0000-0001-8528-0301</orcidid><orcidid>https://orcid.org/0000-0002-7080-8393</orcidid><orcidid>https://orcid.org/0000-0002-6754-485X</orcidid><orcidid>https://orcid.org/0000-0001-8480-4775</orcidid><orcidid>https://orcid.org/0000-0001-5543-9924</orcidid><orcidid>https://orcid.org/0000-0003-2324-3403</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2022-06, Vol.24 (6), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202101308
source Wiley Online Library Journals Frontfile Complete
subjects ASAXS
catalysis
core–shell
nanoparticles
reverse water–gas shift reaction
TEM
XAFS
title Size‐Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%E2%80%90Tunable%20Ni%E2%80%93Cu%20Core%E2%80%93Shell%20Nanoparticles%E2%80%94Structure,%20Composition,%20and%20Catalytic%20Activity%20for%20the%20Reverse%20Water%E2%80%93Gas%20Shift%20Reaction&rft.jtitle=Advanced%20engineering%20materials&rft.au=Heilmann,%20Maria&rft.date=2022-06&rft.volume=24&rft.issue=6&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202101308&rft_dat=%3Cwiley_cross%3EADEM202101308%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true