Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive

Herein, the deposition of a Ti–Al(48 at%) alloy via twin‐wire arc additive manufacturing (WAAM) using plasma arc welding (PAW) and tungsten inert gas (TIG) welding arc sources is presented. The microstructure and the phase composition of different regions of the alloy are analyzed using metalloscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2022-05, Vol.24 (5), p.n/a
Hauptverfasser: Hou, Xiaoqi, Ye, Xin, Qian, Xiaoyan, Zhang, Xi, Zhang, Peilei, Lu, Qinghua, Yu, Zhishui, Shen, Chen, Wang, Lin, Hua, Xueming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced engineering materials
container_volume 24
creator Hou, Xiaoqi
Ye, Xin
Qian, Xiaoyan
Zhang, Xi
Zhang, Peilei
Lu, Qinghua
Yu, Zhishui
Shen, Chen
Wang, Lin
Hua, Xueming
description Herein, the deposition of a Ti–Al(48 at%) alloy via twin‐wire arc additive manufacturing (WAAM) using plasma arc welding (PAW) and tungsten inert gas (TIG) welding arc sources is presented. The microstructure and the phase composition of different regions of the alloy are analyzed using metalloscopy and X‐ray diffraction. The transient temperature field and residual stress distribution are measured before and after the process, respectively. A transient thermostress model is established using the finite‐element method. Results show that the alloy is composed primarily of α2‐Ti3Al and γ‐TiAl phases, while the microstructure evolution during the Ti–Al(48 at%) alloy deposition process is described. The thermal conductivity in the lower region of the alloy far exceeds that in the middle and upper regions. The thermal conductivity is smaller in the upper region and the midregion, resulting in the increase in heat accumulation. Due to arc shrinkage and reduced heat input, the PAW process reduces the heat accumulation and stress distribution differences more effectively than the TIG process. Herein, a comparative study of Ti–Al samples manufactured by twin‐wire arc additive manufacturing (WAAM) using tungsten inert gas (TIG) welding and plasma arc welding (PAW), focusing on heat accumulation, microstructure evolution, and residual stress, is described. The results show that the PAW process achieves a more uniform microstructure and stress distribution.
doi_str_mv 10.1002/adem.202101151
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202101151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202101151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2891-49aa89bc7fa6085d3216e6b47f8ebb2720a6e159d91200c39063a971525ef06c3</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKdXz_kAdiZpmzbHsk0nbChY8Vhe0xQiaStJu9HbLt4Fv-E-id0mevT0Hrz_7w_vh9A1JRNKCLuFQlUTRhgllIb0BI1oyCKP8SA-HfbAjz3KQ36OLpx7I0OGUH-EPhYKWpxI2VWdgVY39Q1eaWkb19pOtp1VeL5uTHe8QF3g59Yq5_BMDwmdHw64KXGqd9uvxODEmKbHK6i7Eg58gfMepxtd77afr3roezLgKsCJlTgpCt3qtbpEZyUYp65-5hi93M3T6cJbPt4_TJOlJ1ksqBcIgFjkMiqBkzgsfEa54nkQlbHKcxYxAlzRUBSCMkKkLwj3QUSDh1CVhEt_jCbH3v2Dzqoye7e6AttnlGR7idleYvYrcQDEEdhoo_p_0lkym6_-2G9d13k8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive</title><source>Wiley Online Library All Journals</source><creator>Hou, Xiaoqi ; Ye, Xin ; Qian, Xiaoyan ; Zhang, Xi ; Zhang, Peilei ; Lu, Qinghua ; Yu, Zhishui ; Shen, Chen ; Wang, Lin ; Hua, Xueming</creator><creatorcontrib>Hou, Xiaoqi ; Ye, Xin ; Qian, Xiaoyan ; Zhang, Xi ; Zhang, Peilei ; Lu, Qinghua ; Yu, Zhishui ; Shen, Chen ; Wang, Lin ; Hua, Xueming</creatorcontrib><description>Herein, the deposition of a Ti–Al(48 at%) alloy via twin‐wire arc additive manufacturing (WAAM) using plasma arc welding (PAW) and tungsten inert gas (TIG) welding arc sources is presented. The microstructure and the phase composition of different regions of the alloy are analyzed using metalloscopy and X‐ray diffraction. The transient temperature field and residual stress distribution are measured before and after the process, respectively. A transient thermostress model is established using the finite‐element method. Results show that the alloy is composed primarily of α2‐Ti3Al and γ‐TiAl phases, while the microstructure evolution during the Ti–Al(48 at%) alloy deposition process is described. The thermal conductivity in the lower region of the alloy far exceeds that in the middle and upper regions. The thermal conductivity is smaller in the upper region and the midregion, resulting in the increase in heat accumulation. Due to arc shrinkage and reduced heat input, the PAW process reduces the heat accumulation and stress distribution differences more effectively than the TIG process. Herein, a comparative study of Ti–Al samples manufactured by twin‐wire arc additive manufacturing (WAAM) using tungsten inert gas (TIG) welding and plasma arc welding (PAW), focusing on heat accumulation, microstructure evolution, and residual stress, is described. The results show that the PAW process achieves a more uniform microstructure and stress distribution.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202101151</identifier><language>eng</language><subject>double wires ; microstructure evolution ; plasma arcs ; Ti–Al alloys ; wire arc additive manufacturing</subject><ispartof>Advanced engineering materials, 2022-05, Vol.24 (5), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2891-49aa89bc7fa6085d3216e6b47f8ebb2720a6e159d91200c39063a971525ef06c3</citedby><cites>FETCH-LOGICAL-c2891-49aa89bc7fa6085d3216e6b47f8ebb2720a6e159d91200c39063a971525ef06c3</cites><orcidid>0000-0003-0181-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202101151$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202101151$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Hou, Xiaoqi</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Zhang, Peilei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Yu, Zhishui</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><title>Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive</title><title>Advanced engineering materials</title><description>Herein, the deposition of a Ti–Al(48 at%) alloy via twin‐wire arc additive manufacturing (WAAM) using plasma arc welding (PAW) and tungsten inert gas (TIG) welding arc sources is presented. The microstructure and the phase composition of different regions of the alloy are analyzed using metalloscopy and X‐ray diffraction. The transient temperature field and residual stress distribution are measured before and after the process, respectively. A transient thermostress model is established using the finite‐element method. Results show that the alloy is composed primarily of α2‐Ti3Al and γ‐TiAl phases, while the microstructure evolution during the Ti–Al(48 at%) alloy deposition process is described. The thermal conductivity in the lower region of the alloy far exceeds that in the middle and upper regions. The thermal conductivity is smaller in the upper region and the midregion, resulting in the increase in heat accumulation. Due to arc shrinkage and reduced heat input, the PAW process reduces the heat accumulation and stress distribution differences more effectively than the TIG process. Herein, a comparative study of Ti–Al samples manufactured by twin‐wire arc additive manufacturing (WAAM) using tungsten inert gas (TIG) welding and plasma arc welding (PAW), focusing on heat accumulation, microstructure evolution, and residual stress, is described. The results show that the PAW process achieves a more uniform microstructure and stress distribution.</description><subject>double wires</subject><subject>microstructure evolution</subject><subject>plasma arcs</subject><subject>Ti–Al alloys</subject><subject>wire arc additive manufacturing</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKdXz_kAdiZpmzbHsk0nbChY8Vhe0xQiaStJu9HbLt4Fv-E-id0mevT0Hrz_7w_vh9A1JRNKCLuFQlUTRhgllIb0BI1oyCKP8SA-HfbAjz3KQ36OLpx7I0OGUH-EPhYKWpxI2VWdgVY39Q1eaWkb19pOtp1VeL5uTHe8QF3g59Yq5_BMDwmdHw64KXGqd9uvxODEmKbHK6i7Eg58gfMepxtd77afr3roezLgKsCJlTgpCt3qtbpEZyUYp65-5hi93M3T6cJbPt4_TJOlJ1ksqBcIgFjkMiqBkzgsfEa54nkQlbHKcxYxAlzRUBSCMkKkLwj3QUSDh1CVhEt_jCbH3v2Dzqoye7e6AttnlGR7idleYvYrcQDEEdhoo_p_0lkym6_-2G9d13k8</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Hou, Xiaoqi</creator><creator>Ye, Xin</creator><creator>Qian, Xiaoyan</creator><creator>Zhang, Xi</creator><creator>Zhang, Peilei</creator><creator>Lu, Qinghua</creator><creator>Yu, Zhishui</creator><creator>Shen, Chen</creator><creator>Wang, Lin</creator><creator>Hua, Xueming</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0181-1107</orcidid></search><sort><creationdate>202205</creationdate><title>Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive</title><author>Hou, Xiaoqi ; Ye, Xin ; Qian, Xiaoyan ; Zhang, Xi ; Zhang, Peilei ; Lu, Qinghua ; Yu, Zhishui ; Shen, Chen ; Wang, Lin ; Hua, Xueming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2891-49aa89bc7fa6085d3216e6b47f8ebb2720a6e159d91200c39063a971525ef06c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>double wires</topic><topic>microstructure evolution</topic><topic>plasma arcs</topic><topic>Ti–Al alloys</topic><topic>wire arc additive manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xiaoqi</creatorcontrib><creatorcontrib>Ye, Xin</creatorcontrib><creatorcontrib>Qian, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Zhang, Peilei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Yu, Zhishui</creatorcontrib><creatorcontrib>Shen, Chen</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Hua, Xueming</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xiaoqi</au><au>Ye, Xin</au><au>Qian, Xiaoyan</au><au>Zhang, Xi</au><au>Zhang, Peilei</au><au>Lu, Qinghua</au><au>Yu, Zhishui</au><au>Shen, Chen</au><au>Wang, Lin</au><au>Hua, Xueming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-05</date><risdate>2022</risdate><volume>24</volume><issue>5</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Herein, the deposition of a Ti–Al(48 at%) alloy via twin‐wire arc additive manufacturing (WAAM) using plasma arc welding (PAW) and tungsten inert gas (TIG) welding arc sources is presented. The microstructure and the phase composition of different regions of the alloy are analyzed using metalloscopy and X‐ray diffraction. The transient temperature field and residual stress distribution are measured before and after the process, respectively. A transient thermostress model is established using the finite‐element method. Results show that the alloy is composed primarily of α2‐Ti3Al and γ‐TiAl phases, while the microstructure evolution during the Ti–Al(48 at%) alloy deposition process is described. The thermal conductivity in the lower region of the alloy far exceeds that in the middle and upper regions. The thermal conductivity is smaller in the upper region and the midregion, resulting in the increase in heat accumulation. Due to arc shrinkage and reduced heat input, the PAW process reduces the heat accumulation and stress distribution differences more effectively than the TIG process. Herein, a comparative study of Ti–Al samples manufactured by twin‐wire arc additive manufacturing (WAAM) using tungsten inert gas (TIG) welding and plasma arc welding (PAW), focusing on heat accumulation, microstructure evolution, and residual stress, is described. The results show that the PAW process achieves a more uniform microstructure and stress distribution.</abstract><doi>10.1002/adem.202101151</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0181-1107</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2022-05, Vol.24 (5), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202101151
source Wiley Online Library All Journals
subjects double wires
microstructure evolution
plasma arcs
Ti–Al alloys
wire arc additive manufacturing
title Heat Accumulation, Microstructure Evolution, and Stress Distribution of Ti–Al Alloy Manufactured by Twin‐Wire Plasma Arc Additive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Accumulation,%20Microstructure%20Evolution,%20and%20Stress%20Distribution%20of%20Ti%E2%80%93Al%20Alloy%20Manufactured%20by%20Twin%E2%80%90Wire%20Plasma%20Arc%20Additive&rft.jtitle=Advanced%20engineering%20materials&rft.au=Hou,%20Xiaoqi&rft.date=2022-05&rft.volume=24&rft.issue=5&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202101151&rft_dat=%3Cwiley_cross%3EADEM202101151%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true