Identifying Internal Stresses during Mechanophore Activation

Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. MPs are an emerging technology for self‐reporting damage sensing applications in polymeric materials in the aeronautical, energy g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2022-04, Vol.24 (4), p.n/a
Hauptverfasser: Rencheck, Mitchell L., Mackey, Brandon T., Hu, Yu-Yang, Chang, Chia-Chih, Sangid, Michael D., Davis, Chelsea S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced engineering materials
container_volume 24
creator Rencheck, Mitchell L.
Mackey, Brandon T.
Hu, Yu-Yang
Chang, Chia-Chih
Sangid, Michael D.
Davis, Chelsea S.
description Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. MPs are an emerging technology for self‐reporting damage sensing applications in polymeric materials in the aeronautical, energy generation, and automotive industries. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation (I) with local hydrostatic stresses (σh) is presented. Uniaxial tension is applied to a simple composite comprised of a rigid sphere (silica) embedded in a MP‐functionalized elastomeric matrix (spiropyran (SPN) functionalized polydimethylsiloxane (PDMS)). By monitoring the fluorescence intensity with a confocal microscope while a quasi‐static deformation is applied, in situ observations of MP activation as a function of applied uniaxial strain are obtained. To calculate the associated stress fields, a finite element analysis (FEA) with cohesive zone elements is employed. By comparing σh, calculated through FEA with the I of the PDMS/SPN system, a linear relationship between I and σh is directly determined. The technique presented can be employed for many MP‐containing materials systems to calibrate I to σh. Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation with local hydrostatic stresses is presented.
doi_str_mv 10.1002/adem.202101080
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_202101080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM202101080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3340-8a71d376ad133222af01e5ba98279e8546e576168c26ad7e596645476ef7ea493</originalsourceid><addsrcrecordid>eNqFj01Lw0AQQBdRsFavnvMHEnf2O-Al1FoDLR7U87ImE7uSJmU3Kvn3plT06GkG5r2BR8g10AwoZTeuxl3GKAMK1NATMgPJdMqUMKfTLrhJQUl1Ti5ifKcUJozPyG1ZYzf4ZvTdW1J2A4bOtcnTEDBGjEn9EQ6HDVZb1_X7bR8wKarBf7rB990lOWtcG_HqZ87Jy_3yefGQrh9X5aJYpxXngqbGaai5Vq4GzhljrqGA8tXlhukcjRQKpVagTMUmRqPMlRJSaIWNRidyPifZ8W8V-hgDNnYf_M6F0QK1h3Z7aLe_7ZOQH4Uv3-L4D22Lu-Xmz_0G8URdFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying Internal Stresses during Mechanophore Activation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rencheck, Mitchell L. ; Mackey, Brandon T. ; Hu, Yu-Yang ; Chang, Chia-Chih ; Sangid, Michael D. ; Davis, Chelsea S.</creator><creatorcontrib>Rencheck, Mitchell L. ; Mackey, Brandon T. ; Hu, Yu-Yang ; Chang, Chia-Chih ; Sangid, Michael D. ; Davis, Chelsea S.</creatorcontrib><description>Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. MPs are an emerging technology for self‐reporting damage sensing applications in polymeric materials in the aeronautical, energy generation, and automotive industries. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation (I) with local hydrostatic stresses (σh) is presented. Uniaxial tension is applied to a simple composite comprised of a rigid sphere (silica) embedded in a MP‐functionalized elastomeric matrix (spiropyran (SPN) functionalized polydimethylsiloxane (PDMS)). By monitoring the fluorescence intensity with a confocal microscope while a quasi‐static deformation is applied, in situ observations of MP activation as a function of applied uniaxial strain are obtained. To calculate the associated stress fields, a finite element analysis (FEA) with cohesive zone elements is employed. By comparing σh, calculated through FEA with the I of the PDMS/SPN system, a linear relationship between I and σh is directly determined. The technique presented can be employed for many MP‐containing materials systems to calibrate I to σh. Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation with local hydrostatic stresses is presented.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.202101080</identifier><language>eng</language><subject>finite element analysis ; mechanophore ; mechanophore activation ; stimuli-responsive ; stress quantification</subject><ispartof>Advanced engineering materials, 2022-04, Vol.24 (4), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3340-8a71d376ad133222af01e5ba98279e8546e576168c26ad7e596645476ef7ea493</citedby><cites>FETCH-LOGICAL-c3340-8a71d376ad133222af01e5ba98279e8546e576168c26ad7e596645476ef7ea493</cites><orcidid>0000-0002-0383-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.202101080$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.202101080$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Rencheck, Mitchell L.</creatorcontrib><creatorcontrib>Mackey, Brandon T.</creatorcontrib><creatorcontrib>Hu, Yu-Yang</creatorcontrib><creatorcontrib>Chang, Chia-Chih</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><creatorcontrib>Davis, Chelsea S.</creatorcontrib><title>Identifying Internal Stresses during Mechanophore Activation</title><title>Advanced engineering materials</title><description>Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. MPs are an emerging technology for self‐reporting damage sensing applications in polymeric materials in the aeronautical, energy generation, and automotive industries. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation (I) with local hydrostatic stresses (σh) is presented. Uniaxial tension is applied to a simple composite comprised of a rigid sphere (silica) embedded in a MP‐functionalized elastomeric matrix (spiropyran (SPN) functionalized polydimethylsiloxane (PDMS)). By monitoring the fluorescence intensity with a confocal microscope while a quasi‐static deformation is applied, in situ observations of MP activation as a function of applied uniaxial strain are obtained. To calculate the associated stress fields, a finite element analysis (FEA) with cohesive zone elements is employed. By comparing σh, calculated through FEA with the I of the PDMS/SPN system, a linear relationship between I and σh is directly determined. The technique presented can be employed for many MP‐containing materials systems to calibrate I to σh. Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation with local hydrostatic stresses is presented.</description><subject>finite element analysis</subject><subject>mechanophore</subject><subject>mechanophore activation</subject><subject>stimuli-responsive</subject><subject>stress quantification</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFj01Lw0AQQBdRsFavnvMHEnf2O-Al1FoDLR7U87ImE7uSJmU3Kvn3plT06GkG5r2BR8g10AwoZTeuxl3GKAMK1NATMgPJdMqUMKfTLrhJQUl1Ti5ifKcUJozPyG1ZYzf4ZvTdW1J2A4bOtcnTEDBGjEn9EQ6HDVZb1_X7bR8wKarBf7rB990lOWtcG_HqZ87Jy_3yefGQrh9X5aJYpxXngqbGaai5Vq4GzhljrqGA8tXlhukcjRQKpVagTMUmRqPMlRJSaIWNRidyPifZ8W8V-hgDNnYf_M6F0QK1h3Z7aLe_7ZOQH4Uv3-L4D22Lu-Xmz_0G8URdFw</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Rencheck, Mitchell L.</creator><creator>Mackey, Brandon T.</creator><creator>Hu, Yu-Yang</creator><creator>Chang, Chia-Chih</creator><creator>Sangid, Michael D.</creator><creator>Davis, Chelsea S.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0383-7717</orcidid></search><sort><creationdate>202204</creationdate><title>Identifying Internal Stresses during Mechanophore Activation</title><author>Rencheck, Mitchell L. ; Mackey, Brandon T. ; Hu, Yu-Yang ; Chang, Chia-Chih ; Sangid, Michael D. ; Davis, Chelsea S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3340-8a71d376ad133222af01e5ba98279e8546e576168c26ad7e596645476ef7ea493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>finite element analysis</topic><topic>mechanophore</topic><topic>mechanophore activation</topic><topic>stimuli-responsive</topic><topic>stress quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rencheck, Mitchell L.</creatorcontrib><creatorcontrib>Mackey, Brandon T.</creatorcontrib><creatorcontrib>Hu, Yu-Yang</creatorcontrib><creatorcontrib>Chang, Chia-Chih</creatorcontrib><creatorcontrib>Sangid, Michael D.</creatorcontrib><creatorcontrib>Davis, Chelsea S.</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rencheck, Mitchell L.</au><au>Mackey, Brandon T.</au><au>Hu, Yu-Yang</au><au>Chang, Chia-Chih</au><au>Sangid, Michael D.</au><au>Davis, Chelsea S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Internal Stresses during Mechanophore Activation</atitle><jtitle>Advanced engineering materials</jtitle><date>2022-04</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><epage>n/a</epage><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. MPs are an emerging technology for self‐reporting damage sensing applications in polymeric materials in the aeronautical, energy generation, and automotive industries. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation (I) with local hydrostatic stresses (σh) is presented. Uniaxial tension is applied to a simple composite comprised of a rigid sphere (silica) embedded in a MP‐functionalized elastomeric matrix (spiropyran (SPN) functionalized polydimethylsiloxane (PDMS)). By monitoring the fluorescence intensity with a confocal microscope while a quasi‐static deformation is applied, in situ observations of MP activation as a function of applied uniaxial strain are obtained. To calculate the associated stress fields, a finite element analysis (FEA) with cohesive zone elements is employed. By comparing σh, calculated through FEA with the I of the PDMS/SPN system, a linear relationship between I and σh is directly determined. The technique presented can be employed for many MP‐containing materials systems to calibrate I to σh. Mechanophores (MPs) undergo chemical reactions to become fluorescent in response to a mechanical stimulus that reflects the magnitude and distribution of applied stress. However, quantitative calibration of the MP response to local stresses remains an outstanding challenge. Herein, a method to calibrate the intensity of the MP fluorescent activation with local hydrostatic stresses is presented.</abstract><doi>10.1002/adem.202101080</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0383-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2022-04, Vol.24 (4), p.n/a
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_202101080
source Wiley Online Library Journals Frontfile Complete
subjects finite element analysis
mechanophore
mechanophore activation
stimuli-responsive
stress quantification
title Identifying Internal Stresses during Mechanophore Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Internal%20Stresses%20during%20Mechanophore%20Activation&rft.jtitle=Advanced%20engineering%20materials&rft.au=Rencheck,%20Mitchell%20L.&rft.date=2022-04&rft.volume=24&rft.issue=4&rft.epage=n/a&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.202101080&rft_dat=%3Cwiley_cross%3EADEM202101080%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true