Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy

The influences of the size and shape of the γ′ phase and the type and distribution of carbides on the fracture behavior of a new Ni–Cr–Fe superalloy subjected to four different solution aging treatments are examined. The γ′ phase and γ matrix of the L12‐ordered structure maintain a coherent orientat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced engineering materials 2020-06, Vol.22 (6), p.n/a, Article 1901070
Hauptverfasser: Zhu, Zhiyuan, Chen, Jiahuan, Cai, Yuanfei, Li, Jianqiang, Shen, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Advanced engineering materials
container_volume 22
creator Zhu, Zhiyuan
Chen, Jiahuan
Cai, Yuanfei
Li, Jianqiang
Shen, Yang
description The influences of the size and shape of the γ′ phase and the type and distribution of carbides on the fracture behavior of a new Ni–Cr–Fe superalloy subjected to four different solution aging treatments are examined. The γ′ phase and γ matrix of the L12‐ordered structure maintain a coherent orientation relationship on the {100} and {110} atomic planes according to transmission electron microscopy observations. The material becomes stronger because the movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The two‐stage aging system (850 °C × 4 h + 730 °C × 4 h) substantially increases the size of the γ′ phase. The solid solution sample shows a microporous‐aggregated ductile fracture, and the solution‐aged samples show a microporous‐aggregated crystalline fracture according to scanning electron microscopy observations. The fracture mechanism is also discussed. A γ′ phase and carbides in different sizes, shapes, and distributions are obtained via different heat treatment methods. The movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The γ′ phase and carbides in different sizes, shapes, and distributions have different effects on the fracture mechanism, which typically affects fracture morphology.
doi_str_mv 10.1002/adem.201901070
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_adem_201901070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADEM201901070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-f67c7d201731822b26373163087e57295c59211dd3dcb055d4ec5b02320907153</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqWwMntHKWc7jpOxhJYitTBQ5shxLqpRmlROCurGO_CGPAmOWpURlrv_Tvedfv2EXDMYMQB-qwtcjziwBBgoOCEDJrkKeBTGp16HIg5YJKNzctG2bwCMARMDkk_KEk1Hm5LOUHd06XxdY-03Ne1WSBfWuKbt3NZ0W4dU1wWdOr0f7nCl323j2h7X9Ml-f36lzpcp0pftBp2uqmZ3Sc5KXbV4dehD8jqdLNNZMH9-eEzH88DwOIGgjJRRhfevBIs5z3kkvIoExAql4ok0MuGMFYUoTA5SFiEamQMXHBJQTIohGe3_9oZbh2W2cXat3S5jkPUJZX1C2TEhD9zsgQ_Mm7I1FmuDRwgAZBhGIQ-9Esxfx_-_Tm2nO9vUabOtO48mB9RWuPvDVja-nyx-Tf4AuMqLTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy</title><source>Access via Wiley Online Library</source><creator>Zhu, Zhiyuan ; Chen, Jiahuan ; Cai, Yuanfei ; Li, Jianqiang ; Shen, Yang</creator><creatorcontrib>Zhu, Zhiyuan ; Chen, Jiahuan ; Cai, Yuanfei ; Li, Jianqiang ; Shen, Yang</creatorcontrib><description>The influences of the size and shape of the γ′ phase and the type and distribution of carbides on the fracture behavior of a new Ni–Cr–Fe superalloy subjected to four different solution aging treatments are examined. The γ′ phase and γ matrix of the L12‐ordered structure maintain a coherent orientation relationship on the {100} and {110} atomic planes according to transmission electron microscopy observations. The material becomes stronger because the movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The two‐stage aging system (850 °C × 4 h + 730 °C × 4 h) substantially increases the size of the γ′ phase. The solid solution sample shows a microporous‐aggregated ductile fracture, and the solution‐aged samples show a microporous‐aggregated crystalline fracture according to scanning electron microscopy observations. The fracture mechanism is also discussed. A γ′ phase and carbides in different sizes, shapes, and distributions are obtained via different heat treatment methods. The movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The γ′ phase and carbides in different sizes, shapes, and distributions have different effects on the fracture mechanism, which typically affects fracture morphology.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201901070</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>carbide phases ; fracture characteristics ; heat treatments ; Materials Science ; Materials Science, Multidisciplinary ; Ni–Cr–Fe superalloys ; Science &amp; Technology ; Technology ; γ′ phase</subject><ispartof>Advanced engineering materials, 2020-06, Vol.22 (6), p.n/a, Article 1901070</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000544642400031</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c2890-f67c7d201731822b26373163087e57295c59211dd3dcb055d4ec5b02320907153</citedby><cites>FETCH-LOGICAL-c2890-f67c7d201731822b26373163087e57295c59211dd3dcb055d4ec5b02320907153</cites><orcidid>0000-0002-6696-1037 ; 0000-0002-6719-6971 ; 0000-0002-9604-4838 ; 0000-0002-1938-8653 ; 0000-0002-1646-434X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadem.201901070$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadem.201901070$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Zhu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Jiahuan</creatorcontrib><creatorcontrib>Cai, Yuanfei</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><title>Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy</title><title>Advanced engineering materials</title><addtitle>ADV ENG MATER</addtitle><description>The influences of the size and shape of the γ′ phase and the type and distribution of carbides on the fracture behavior of a new Ni–Cr–Fe superalloy subjected to four different solution aging treatments are examined. The γ′ phase and γ matrix of the L12‐ordered structure maintain a coherent orientation relationship on the {100} and {110} atomic planes according to transmission electron microscopy observations. The material becomes stronger because the movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The two‐stage aging system (850 °C × 4 h + 730 °C × 4 h) substantially increases the size of the γ′ phase. The solid solution sample shows a microporous‐aggregated ductile fracture, and the solution‐aged samples show a microporous‐aggregated crystalline fracture according to scanning electron microscopy observations. The fracture mechanism is also discussed. A γ′ phase and carbides in different sizes, shapes, and distributions are obtained via different heat treatment methods. The movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The γ′ phase and carbides in different sizes, shapes, and distributions have different effects on the fracture mechanism, which typically affects fracture morphology.</description><subject>carbide phases</subject><subject>fracture characteristics</subject><subject>heat treatments</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Ni–Cr–Fe superalloys</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>γ′ phase</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkLFOwzAQhi0EEqWwMntHKWc7jpOxhJYitTBQ5shxLqpRmlROCurGO_CGPAmOWpURlrv_Tvedfv2EXDMYMQB-qwtcjziwBBgoOCEDJrkKeBTGp16HIg5YJKNzctG2bwCMARMDkk_KEk1Hm5LOUHd06XxdY-03Ne1WSBfWuKbt3NZ0W4dU1wWdOr0f7nCl323j2h7X9Ml-f36lzpcp0pftBp2uqmZ3Sc5KXbV4dehD8jqdLNNZMH9-eEzH88DwOIGgjJRRhfevBIs5z3kkvIoExAql4ok0MuGMFYUoTA5SFiEamQMXHBJQTIohGe3_9oZbh2W2cXat3S5jkPUJZX1C2TEhD9zsgQ_Mm7I1FmuDRwgAZBhGIQ-9Esxfx_-_Tm2nO9vUabOtO48mB9RWuPvDVja-nyx-Tf4AuMqLTw</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zhu, Zhiyuan</creator><creator>Chen, Jiahuan</creator><creator>Cai, Yuanfei</creator><creator>Li, Jianqiang</creator><creator>Shen, Yang</creator><general>Wiley</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6696-1037</orcidid><orcidid>https://orcid.org/0000-0002-6719-6971</orcidid><orcidid>https://orcid.org/0000-0002-9604-4838</orcidid><orcidid>https://orcid.org/0000-0002-1938-8653</orcidid><orcidid>https://orcid.org/0000-0002-1646-434X</orcidid></search><sort><creationdate>202006</creationdate><title>Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy</title><author>Zhu, Zhiyuan ; Chen, Jiahuan ; Cai, Yuanfei ; Li, Jianqiang ; Shen, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-f67c7d201731822b26373163087e57295c59211dd3dcb055d4ec5b02320907153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>carbide phases</topic><topic>fracture characteristics</topic><topic>heat treatments</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Ni–Cr–Fe superalloys</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>γ′ phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Jiahuan</creatorcontrib><creatorcontrib>Cai, Yuanfei</creatorcontrib><creatorcontrib>Li, Jianqiang</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhiyuan</au><au>Chen, Jiahuan</au><au>Cai, Yuanfei</au><au>Li, Jianqiang</au><au>Shen, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy</atitle><jtitle>Advanced engineering materials</jtitle><stitle>ADV ENG MATER</stitle><date>2020-06</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><epage>n/a</epage><artnum>1901070</artnum><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>The influences of the size and shape of the γ′ phase and the type and distribution of carbides on the fracture behavior of a new Ni–Cr–Fe superalloy subjected to four different solution aging treatments are examined. The γ′ phase and γ matrix of the L12‐ordered structure maintain a coherent orientation relationship on the {100} and {110} atomic planes according to transmission electron microscopy observations. The material becomes stronger because the movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The two‐stage aging system (850 °C × 4 h + 730 °C × 4 h) substantially increases the size of the γ′ phase. The solid solution sample shows a microporous‐aggregated ductile fracture, and the solution‐aged samples show a microporous‐aggregated crystalline fracture according to scanning electron microscopy observations. The fracture mechanism is also discussed. A γ′ phase and carbides in different sizes, shapes, and distributions are obtained via different heat treatment methods. The movement of dislocations is hindered by the γ′ phase and MC (Nb‐rich, Ti‐rich) and M23C6 (Cr‐rich, Mo‐rich) carbides. The γ′ phase and carbides in different sizes, shapes, and distributions have different effects on the fracture mechanism, which typically affects fracture morphology.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adem.201901070</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6696-1037</orcidid><orcidid>https://orcid.org/0000-0002-6719-6971</orcidid><orcidid>https://orcid.org/0000-0002-9604-4838</orcidid><orcidid>https://orcid.org/0000-0002-1938-8653</orcidid><orcidid>https://orcid.org/0000-0002-1646-434X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2020-06, Vol.22 (6), p.n/a, Article 1901070
issn 1438-1656
1527-2648
language eng
recordid cdi_crossref_primary_10_1002_adem_201901070
source Access via Wiley Online Library
subjects carbide phases
fracture characteristics
heat treatments
Materials Science
Materials Science, Multidisciplinary
Ni–Cr–Fe superalloys
Science & Technology
Technology
γ′ phase
title Effect of Heat Treatment on the Microstructure and Fracture Behaviors of a Ni–Cr–Fe Superalloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20Treatment%20on%20the%20Microstructure%20and%20Fracture%20Behaviors%20of%20a%20Ni%E2%80%93Cr%E2%80%93Fe%20Superalloy&rft.jtitle=Advanced%20engineering%20materials&rft.au=Zhu,%20Zhiyuan&rft.date=2020-06&rft.volume=22&rft.issue=6&rft.epage=n/a&rft.artnum=1901070&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201901070&rft_dat=%3Cwiley_cross%3EADEM201901070%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true