Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes
We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate,...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kildal, Wanja Cyll, Karolina Urszula Kalsnes, Joakim Islam, Rakibul Julbø, Frida M Pradhan, Manohar Ersvær, Elin Shepherd, Neil Vlatkovic, Ljiljana Tekpli, Xavier Garred, Øystein Kristensen, Gunnar S Balle Askautrud, Hanne Arenberg Hveem, Tarjei Sveinsgjerd Danielsen, Håvard Emil Greger Bathen, Tone Frost Borgen, Elin Børresen-Dale, Anne-Lise Engebråten, Olav Fritzman, Britt Hartmann-Johnsen, Olaf Johan Geisler, Jürgen Geitvik, Gry Hofvind, Solveig Sand-Hanssen Kåresen, Rolf Langerød, Anita Lingjærde, Ole Christian Mælandsmo, Gunhild Mari Naume, Bjørn Russnes, Hege Elisabeth Giercksky Sahlberg, Guro Kristine Kleivi Sauer, Torill Skjerven, Helle Schlichting, Ellen Sørlie, Therese |
description | We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types.
Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3175179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3175179</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31751793</originalsourceid><addsrcrecordid>eNqNjjsKAkEQRDcxEPUO7QEEVxEx9oMHENOlHXu1YWZ6me4JzLyDiefzJI4gxkZFVb2C6lfPDVEHnjBFjhdoJQFmk4BGZ1An6ZNKCxxCjnJlNXFXCuzQ-xuoIccCWg6SExirZgIlZyxR4XV_wBE9n_HjAV0S1R9860jhhFr2pewKQ9FAsjkJpMOq16JXGn11UI1328N6P3GpnODYREnY1PVsMW3m9XJRL1fzf5g3uRxUTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><source>NORA - Norwegian Open Research Archives</source><creator>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</creator><creatorcontrib>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</creatorcontrib><description>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types.
Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</description><language>eng</language><publisher>Elsevier</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3175179$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kildal, Wanja</creatorcontrib><creatorcontrib>Cyll, Karolina Urszula</creatorcontrib><creatorcontrib>Kalsnes, Joakim</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Julbø, Frida M</creatorcontrib><creatorcontrib>Pradhan, Manohar</creatorcontrib><creatorcontrib>Ersvær, Elin</creatorcontrib><creatorcontrib>Shepherd, Neil</creatorcontrib><creatorcontrib>Vlatkovic, Ljiljana</creatorcontrib><creatorcontrib>Tekpli, Xavier</creatorcontrib><creatorcontrib>Garred, Øystein</creatorcontrib><creatorcontrib>Kristensen, Gunnar S Balle</creatorcontrib><creatorcontrib>Askautrud, Hanne Arenberg</creatorcontrib><creatorcontrib>Hveem, Tarjei Sveinsgjerd</creatorcontrib><creatorcontrib>Danielsen, Håvard Emil Greger</creatorcontrib><creatorcontrib>Bathen, Tone Frost</creatorcontrib><creatorcontrib>Borgen, Elin</creatorcontrib><creatorcontrib>Børresen-Dale, Anne-Lise</creatorcontrib><creatorcontrib>Engebråten, Olav</creatorcontrib><creatorcontrib>Fritzman, Britt</creatorcontrib><creatorcontrib>Hartmann-Johnsen, Olaf Johan</creatorcontrib><creatorcontrib>Geisler, Jürgen</creatorcontrib><creatorcontrib>Geitvik, Gry</creatorcontrib><creatorcontrib>Hofvind, Solveig Sand-Hanssen</creatorcontrib><creatorcontrib>Kåresen, Rolf</creatorcontrib><creatorcontrib>Langerød, Anita</creatorcontrib><creatorcontrib>Lingjærde, Ole Christian</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Naume, Bjørn</creatorcontrib><creatorcontrib>Russnes, Hege Elisabeth Giercksky</creatorcontrib><creatorcontrib>Sahlberg, Guro Kristine Kleivi</creatorcontrib><creatorcontrib>Sauer, Torill</creatorcontrib><creatorcontrib>Skjerven, Helle</creatorcontrib><creatorcontrib>Schlichting, Ellen</creatorcontrib><creatorcontrib>Sørlie, Therese</creatorcontrib><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><description>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types.
Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjjsKAkEQRDcxEPUO7QEEVxEx9oMHENOlHXu1YWZ6me4JzLyDiefzJI4gxkZFVb2C6lfPDVEHnjBFjhdoJQFmk4BGZ1An6ZNKCxxCjnJlNXFXCuzQ-xuoIccCWg6SExirZgIlZyxR4XV_wBE9n_HjAV0S1R9860jhhFr2pewKQ9FAsjkJpMOq16JXGn11UI1328N6P3GpnODYREnY1PVsMW3m9XJRL1fzf5g3uRxUTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kildal, Wanja</creator><creator>Cyll, Karolina Urszula</creator><creator>Kalsnes, Joakim</creator><creator>Islam, Rakibul</creator><creator>Julbø, Frida M</creator><creator>Pradhan, Manohar</creator><creator>Ersvær, Elin</creator><creator>Shepherd, Neil</creator><creator>Vlatkovic, Ljiljana</creator><creator>Tekpli, Xavier</creator><creator>Garred, Øystein</creator><creator>Kristensen, Gunnar S Balle</creator><creator>Askautrud, Hanne Arenberg</creator><creator>Hveem, Tarjei Sveinsgjerd</creator><creator>Danielsen, Håvard Emil Greger</creator><creator>Bathen, Tone Frost</creator><creator>Borgen, Elin</creator><creator>Børresen-Dale, Anne-Lise</creator><creator>Engebråten, Olav</creator><creator>Fritzman, Britt</creator><creator>Hartmann-Johnsen, Olaf Johan</creator><creator>Geisler, Jürgen</creator><creator>Geitvik, Gry</creator><creator>Hofvind, Solveig Sand-Hanssen</creator><creator>Kåresen, Rolf</creator><creator>Langerød, Anita</creator><creator>Lingjærde, Ole Christian</creator><creator>Mælandsmo, Gunhild Mari</creator><creator>Naume, Bjørn</creator><creator>Russnes, Hege Elisabeth Giercksky</creator><creator>Sahlberg, Guro Kristine Kleivi</creator><creator>Sauer, Torill</creator><creator>Skjerven, Helle</creator><creator>Schlichting, Ellen</creator><creator>Sørlie, Therese</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><author>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31751793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kildal, Wanja</creatorcontrib><creatorcontrib>Cyll, Karolina Urszula</creatorcontrib><creatorcontrib>Kalsnes, Joakim</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Julbø, Frida M</creatorcontrib><creatorcontrib>Pradhan, Manohar</creatorcontrib><creatorcontrib>Ersvær, Elin</creatorcontrib><creatorcontrib>Shepherd, Neil</creatorcontrib><creatorcontrib>Vlatkovic, Ljiljana</creatorcontrib><creatorcontrib>Tekpli, Xavier</creatorcontrib><creatorcontrib>Garred, Øystein</creatorcontrib><creatorcontrib>Kristensen, Gunnar S Balle</creatorcontrib><creatorcontrib>Askautrud, Hanne Arenberg</creatorcontrib><creatorcontrib>Hveem, Tarjei Sveinsgjerd</creatorcontrib><creatorcontrib>Danielsen, Håvard Emil Greger</creatorcontrib><creatorcontrib>Bathen, Tone Frost</creatorcontrib><creatorcontrib>Borgen, Elin</creatorcontrib><creatorcontrib>Børresen-Dale, Anne-Lise</creatorcontrib><creatorcontrib>Engebråten, Olav</creatorcontrib><creatorcontrib>Fritzman, Britt</creatorcontrib><creatorcontrib>Hartmann-Johnsen, Olaf Johan</creatorcontrib><creatorcontrib>Geisler, Jürgen</creatorcontrib><creatorcontrib>Geitvik, Gry</creatorcontrib><creatorcontrib>Hofvind, Solveig Sand-Hanssen</creatorcontrib><creatorcontrib>Kåresen, Rolf</creatorcontrib><creatorcontrib>Langerød, Anita</creatorcontrib><creatorcontrib>Lingjærde, Ole Christian</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Naume, Bjørn</creatorcontrib><creatorcontrib>Russnes, Hege Elisabeth Giercksky</creatorcontrib><creatorcontrib>Sahlberg, Guro Kristine Kleivi</creatorcontrib><creatorcontrib>Sauer, Torill</creatorcontrib><creatorcontrib>Skjerven, Helle</creatorcontrib><creatorcontrib>Schlichting, Ellen</creatorcontrib><creatorcontrib>Sørlie, Therese</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kildal, Wanja</au><au>Cyll, Karolina Urszula</au><au>Kalsnes, Joakim</au><au>Islam, Rakibul</au><au>Julbø, Frida M</au><au>Pradhan, Manohar</au><au>Ersvær, Elin</au><au>Shepherd, Neil</au><au>Vlatkovic, Ljiljana</au><au>Tekpli, Xavier</au><au>Garred, Øystein</au><au>Kristensen, Gunnar S Balle</au><au>Askautrud, Hanne Arenberg</au><au>Hveem, Tarjei Sveinsgjerd</au><au>Danielsen, Håvard Emil Greger</au><au>Bathen, Tone Frost</au><au>Borgen, Elin</au><au>Børresen-Dale, Anne-Lise</au><au>Engebråten, Olav</au><au>Fritzman, Britt</au><au>Hartmann-Johnsen, Olaf Johan</au><au>Geisler, Jürgen</au><au>Geitvik, Gry</au><au>Hofvind, Solveig Sand-Hanssen</au><au>Kåresen, Rolf</au><au>Langerød, Anita</au><au>Lingjærde, Ole Christian</au><au>Mælandsmo, Gunhild Mari</au><au>Naume, Bjørn</au><au>Russnes, Hege Elisabeth Giercksky</au><au>Sahlberg, Guro Kristine Kleivi</au><au>Sauer, Torill</au><au>Skjerven, Helle</au><au>Schlichting, Ellen</au><au>Sørlie, Therese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</atitle><date>2024</date><risdate>2024</risdate><abstract>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types.
Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3175179 |
source | NORA - Norwegian Open Research Archives |
title | Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20automated%20scoring%20of%20immunohistochemically%20stained%20tumour%20tissue%20sections%20%E2%80%93%20Validation%20across%20tumour%20types%20based%20on%20patient%20outcomes&rft.au=Kildal,%20Wanja&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3175179%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |