Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes

We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kildal, Wanja, Cyll, Karolina Urszula, Kalsnes, Joakim, Islam, Rakibul, Julbø, Frida M, Pradhan, Manohar, Ersvær, Elin, Shepherd, Neil, Vlatkovic, Ljiljana, Tekpli, Xavier, Garred, Øystein, Kristensen, Gunnar S Balle, Askautrud, Hanne Arenberg, Hveem, Tarjei Sveinsgjerd, Danielsen, Håvard Emil Greger, Bathen, Tone Frost, Borgen, Elin, Børresen-Dale, Anne-Lise, Engebråten, Olav, Fritzman, Britt, Hartmann-Johnsen, Olaf Johan, Geisler, Jürgen, Geitvik, Gry, Hofvind, Solveig Sand-Hanssen, Kåresen, Rolf, Langerød, Anita, Lingjærde, Ole Christian, Mælandsmo, Gunhild Mari, Naume, Bjørn, Russnes, Hege Elisabeth Giercksky, Sahlberg, Guro Kristine Kleivi, Sauer, Torill, Skjerven, Helle, Schlichting, Ellen, Sørlie, Therese
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kildal, Wanja
Cyll, Karolina Urszula
Kalsnes, Joakim
Islam, Rakibul
Julbø, Frida M
Pradhan, Manohar
Ersvær, Elin
Shepherd, Neil
Vlatkovic, Ljiljana
Tekpli, Xavier
Garred, Øystein
Kristensen, Gunnar S Balle
Askautrud, Hanne Arenberg
Hveem, Tarjei Sveinsgjerd
Danielsen, Håvard Emil Greger
Bathen, Tone Frost
Borgen, Elin
Børresen-Dale, Anne-Lise
Engebråten, Olav
Fritzman, Britt
Hartmann-Johnsen, Olaf Johan
Geisler, Jürgen
Geitvik, Gry
Hofvind, Solveig Sand-Hanssen
Kåresen, Rolf
Langerød, Anita
Lingjærde, Ole Christian
Mælandsmo, Gunhild Mari
Naume, Bjørn
Russnes, Hege Elisabeth Giercksky
Sahlberg, Guro Kristine Kleivi
Sauer, Torill
Skjerven, Helle
Schlichting, Ellen
Sørlie, Therese
description We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3175179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3175179</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31751793</originalsourceid><addsrcrecordid>eNqNjjsKAkEQRDcxEPUO7QEEVxEx9oMHENOlHXu1YWZ6me4JzLyDiefzJI4gxkZFVb2C6lfPDVEHnjBFjhdoJQFmk4BGZ1An6ZNKCxxCjnJlNXFXCuzQ-xuoIccCWg6SExirZgIlZyxR4XV_wBE9n_HjAV0S1R9860jhhFr2pewKQ9FAsjkJpMOq16JXGn11UI1328N6P3GpnODYREnY1PVsMW3m9XJRL1fzf5g3uRxUTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><source>NORA - Norwegian Open Research Archives</source><creator>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</creator><creatorcontrib>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</creatorcontrib><description>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</description><language>eng</language><publisher>Elsevier</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3175179$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kildal, Wanja</creatorcontrib><creatorcontrib>Cyll, Karolina Urszula</creatorcontrib><creatorcontrib>Kalsnes, Joakim</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Julbø, Frida M</creatorcontrib><creatorcontrib>Pradhan, Manohar</creatorcontrib><creatorcontrib>Ersvær, Elin</creatorcontrib><creatorcontrib>Shepherd, Neil</creatorcontrib><creatorcontrib>Vlatkovic, Ljiljana</creatorcontrib><creatorcontrib>Tekpli, Xavier</creatorcontrib><creatorcontrib>Garred, Øystein</creatorcontrib><creatorcontrib>Kristensen, Gunnar S Balle</creatorcontrib><creatorcontrib>Askautrud, Hanne Arenberg</creatorcontrib><creatorcontrib>Hveem, Tarjei Sveinsgjerd</creatorcontrib><creatorcontrib>Danielsen, Håvard Emil Greger</creatorcontrib><creatorcontrib>Bathen, Tone Frost</creatorcontrib><creatorcontrib>Borgen, Elin</creatorcontrib><creatorcontrib>Børresen-Dale, Anne-Lise</creatorcontrib><creatorcontrib>Engebråten, Olav</creatorcontrib><creatorcontrib>Fritzman, Britt</creatorcontrib><creatorcontrib>Hartmann-Johnsen, Olaf Johan</creatorcontrib><creatorcontrib>Geisler, Jürgen</creatorcontrib><creatorcontrib>Geitvik, Gry</creatorcontrib><creatorcontrib>Hofvind, Solveig Sand-Hanssen</creatorcontrib><creatorcontrib>Kåresen, Rolf</creatorcontrib><creatorcontrib>Langerød, Anita</creatorcontrib><creatorcontrib>Lingjærde, Ole Christian</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Naume, Bjørn</creatorcontrib><creatorcontrib>Russnes, Hege Elisabeth Giercksky</creatorcontrib><creatorcontrib>Sahlberg, Guro Kristine Kleivi</creatorcontrib><creatorcontrib>Sauer, Torill</creatorcontrib><creatorcontrib>Skjerven, Helle</creatorcontrib><creatorcontrib>Schlichting, Ellen</creatorcontrib><creatorcontrib>Sørlie, Therese</creatorcontrib><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><description>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjjsKAkEQRDcxEPUO7QEEVxEx9oMHENOlHXu1YWZ6me4JzLyDiefzJI4gxkZFVb2C6lfPDVEHnjBFjhdoJQFmk4BGZ1An6ZNKCxxCjnJlNXFXCuzQ-xuoIccCWg6SExirZgIlZyxR4XV_wBE9n_HjAV0S1R9860jhhFr2pewKQ9FAsjkJpMOq16JXGn11UI1328N6P3GpnODYREnY1PVsMW3m9XJRL1fzf5g3uRxUTA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kildal, Wanja</creator><creator>Cyll, Karolina Urszula</creator><creator>Kalsnes, Joakim</creator><creator>Islam, Rakibul</creator><creator>Julbø, Frida M</creator><creator>Pradhan, Manohar</creator><creator>Ersvær, Elin</creator><creator>Shepherd, Neil</creator><creator>Vlatkovic, Ljiljana</creator><creator>Tekpli, Xavier</creator><creator>Garred, Øystein</creator><creator>Kristensen, Gunnar S Balle</creator><creator>Askautrud, Hanne Arenberg</creator><creator>Hveem, Tarjei Sveinsgjerd</creator><creator>Danielsen, Håvard Emil Greger</creator><creator>Bathen, Tone Frost</creator><creator>Borgen, Elin</creator><creator>Børresen-Dale, Anne-Lise</creator><creator>Engebråten, Olav</creator><creator>Fritzman, Britt</creator><creator>Hartmann-Johnsen, Olaf Johan</creator><creator>Geisler, Jürgen</creator><creator>Geitvik, Gry</creator><creator>Hofvind, Solveig Sand-Hanssen</creator><creator>Kåresen, Rolf</creator><creator>Langerød, Anita</creator><creator>Lingjærde, Ole Christian</creator><creator>Mælandsmo, Gunhild Mari</creator><creator>Naume, Bjørn</creator><creator>Russnes, Hege Elisabeth Giercksky</creator><creator>Sahlberg, Guro Kristine Kleivi</creator><creator>Sauer, Torill</creator><creator>Skjerven, Helle</creator><creator>Schlichting, Ellen</creator><creator>Sørlie, Therese</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</title><author>Kildal, Wanja ; Cyll, Karolina Urszula ; Kalsnes, Joakim ; Islam, Rakibul ; Julbø, Frida M ; Pradhan, Manohar ; Ersvær, Elin ; Shepherd, Neil ; Vlatkovic, Ljiljana ; Tekpli, Xavier ; Garred, Øystein ; Kristensen, Gunnar S Balle ; Askautrud, Hanne Arenberg ; Hveem, Tarjei Sveinsgjerd ; Danielsen, Håvard Emil Greger ; Bathen, Tone Frost ; Borgen, Elin ; Børresen-Dale, Anne-Lise ; Engebråten, Olav ; Fritzman, Britt ; Hartmann-Johnsen, Olaf Johan ; Geisler, Jürgen ; Geitvik, Gry ; Hofvind, Solveig Sand-Hanssen ; Kåresen, Rolf ; Langerød, Anita ; Lingjærde, Ole Christian ; Mælandsmo, Gunhild Mari ; Naume, Bjørn ; Russnes, Hege Elisabeth Giercksky ; Sahlberg, Guro Kristine Kleivi ; Sauer, Torill ; Skjerven, Helle ; Schlichting, Ellen ; Sørlie, Therese</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31751793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kildal, Wanja</creatorcontrib><creatorcontrib>Cyll, Karolina Urszula</creatorcontrib><creatorcontrib>Kalsnes, Joakim</creatorcontrib><creatorcontrib>Islam, Rakibul</creatorcontrib><creatorcontrib>Julbø, Frida M</creatorcontrib><creatorcontrib>Pradhan, Manohar</creatorcontrib><creatorcontrib>Ersvær, Elin</creatorcontrib><creatorcontrib>Shepherd, Neil</creatorcontrib><creatorcontrib>Vlatkovic, Ljiljana</creatorcontrib><creatorcontrib>Tekpli, Xavier</creatorcontrib><creatorcontrib>Garred, Øystein</creatorcontrib><creatorcontrib>Kristensen, Gunnar S Balle</creatorcontrib><creatorcontrib>Askautrud, Hanne Arenberg</creatorcontrib><creatorcontrib>Hveem, Tarjei Sveinsgjerd</creatorcontrib><creatorcontrib>Danielsen, Håvard Emil Greger</creatorcontrib><creatorcontrib>Bathen, Tone Frost</creatorcontrib><creatorcontrib>Borgen, Elin</creatorcontrib><creatorcontrib>Børresen-Dale, Anne-Lise</creatorcontrib><creatorcontrib>Engebråten, Olav</creatorcontrib><creatorcontrib>Fritzman, Britt</creatorcontrib><creatorcontrib>Hartmann-Johnsen, Olaf Johan</creatorcontrib><creatorcontrib>Geisler, Jürgen</creatorcontrib><creatorcontrib>Geitvik, Gry</creatorcontrib><creatorcontrib>Hofvind, Solveig Sand-Hanssen</creatorcontrib><creatorcontrib>Kåresen, Rolf</creatorcontrib><creatorcontrib>Langerød, Anita</creatorcontrib><creatorcontrib>Lingjærde, Ole Christian</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild Mari</creatorcontrib><creatorcontrib>Naume, Bjørn</creatorcontrib><creatorcontrib>Russnes, Hege Elisabeth Giercksky</creatorcontrib><creatorcontrib>Sahlberg, Guro Kristine Kleivi</creatorcontrib><creatorcontrib>Sauer, Torill</creatorcontrib><creatorcontrib>Skjerven, Helle</creatorcontrib><creatorcontrib>Schlichting, Ellen</creatorcontrib><creatorcontrib>Sørlie, Therese</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kildal, Wanja</au><au>Cyll, Karolina Urszula</au><au>Kalsnes, Joakim</au><au>Islam, Rakibul</au><au>Julbø, Frida M</au><au>Pradhan, Manohar</au><au>Ersvær, Elin</au><au>Shepherd, Neil</au><au>Vlatkovic, Ljiljana</au><au>Tekpli, Xavier</au><au>Garred, Øystein</au><au>Kristensen, Gunnar S Balle</au><au>Askautrud, Hanne Arenberg</au><au>Hveem, Tarjei Sveinsgjerd</au><au>Danielsen, Håvard Emil Greger</au><au>Bathen, Tone Frost</au><au>Borgen, Elin</au><au>Børresen-Dale, Anne-Lise</au><au>Engebråten, Olav</au><au>Fritzman, Britt</au><au>Hartmann-Johnsen, Olaf Johan</au><au>Geisler, Jürgen</au><au>Geitvik, Gry</au><au>Hofvind, Solveig Sand-Hanssen</au><au>Kåresen, Rolf</au><au>Langerød, Anita</au><au>Lingjærde, Ole Christian</au><au>Mælandsmo, Gunhild Mari</au><au>Naume, Bjørn</au><au>Russnes, Hege Elisabeth Giercksky</au><au>Sahlberg, Guro Kristine Kleivi</au><au>Sauer, Torill</au><au>Skjerven, Helle</au><au>Schlichting, Ellen</au><au>Sørlie, Therese</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes</atitle><date>2024</date><risdate>2024</risdate><abstract>We aimed to develop deep learning (DL) models to detect protein expression in immunohistochemically (IHC) stained tissue-sections, and to compare their accuracy and performance with manually scored clinically relevant proteins in common cancer types. Five cancer patient cohorts (colon, two prostate, breast, and endometrial) were included. We developed separate DL models for scoring IHC-stained tissue-sections with nuclear, cytoplasmic, and membranous staining patterns. For training, we used images with annotations of cells with positive and negative staining from the colon cohort stained for Ki-67 and PMS2 (nuclear model), the prostate cohort 1 stained for PTEN (cytoplasmic model) and β-catenin (membranous model). The nuclear DL model was validated for MSH6 in the colon, MSH6 and PMS2 in the endometrium, Ki-67 and CyclinB1 in prostate, and oestrogen and progesterone receptors in the breast cancer cohorts. The cytoplasmic DL model was validated for PTEN and Mapre2, and the membranous DL model for CD44 and Flotillin1, all in prostate cohorts. When comparing the results of manual and DL scores in the validation sets, using manual scores as the ground truth, we observed an average correct classification rate of 91.5 % (76.9–98.5 %) for the nuclear model, 85.6 % (73.3–96.6 %) for the cytoplasmic model, and 78.4 % (75.5–84.3 %) for the membranous model. In survival analyses, manual and DL scores showed similar prognostic impact, with similar hazard ratios and p-values for all DL models. Our findings demonstrate that DL models offer a promising alternative to manual IHC scoring, providing efficiency and reproducibility across various data sources and markers.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3175179
source NORA - Norwegian Open Research Archives
title Deep learning for automated scoring of immunohistochemically stained tumour tissue sections – Validation across tumour types based on patient outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20automated%20scoring%20of%20immunohistochemically%20stained%20tumour%20tissue%20sections%20%E2%80%93%20Validation%20across%20tumour%20types%20based%20on%20patient%20outcomes&rft.au=Kildal,%20Wanja&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3175179%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true