Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models

This paper proposes an explicable early warning machine learning model for predicting financial distress, which generalizes across listed Nordic corporations. We develop a novel dataset, covering the period from Q1 2001 to Q2 2022, in which we combine idiosyncratic quarterly financial statement data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Birkeland Abrahamsen, Nils-Gunnar, Nylén-Forthun, Emil, Møller, Mats, de Lange, Petter Eilif, Risstad, Morten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Birkeland Abrahamsen, Nils-Gunnar
Nylén-Forthun, Emil
Møller, Mats
de Lange, Petter Eilif
Risstad, Morten
description This paper proposes an explicable early warning machine learning model for predicting financial distress, which generalizes across listed Nordic corporations. We develop a novel dataset, covering the period from Q1 2001 to Q2 2022, in which we combine idiosyncratic quarterly financial statement data, information from financial markets, and indicators of macroeconomic trends. The preferred LightGBM model, whose features are selected by applying explainable artificial intelligence, outperforms the benchmark models by a notable margin across evaluation metrics. We find that features related to liquidity, solvency, and size are highly important indicators of financial health and thus crucial variables for forecasting financial distress. Furthermore, we show that explicitly accounting for seasonality, in combination with entity, market, and macro information, improves model performance.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3155443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3155443</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31554433</originalsourceid><addsrcrecordid>eNqNjTEKwkAQANNYiPqH9QGC5yWNrSZYGLEQxCosl41ZOPdg9xp_b0AfYDUwDMy8eDQsKIExwpEtK5nBVannkDkJsEAeCS5JJ2N7qFHjG-6owvI0GDS9oMUwshCc6auhTT1FWxazAaPR6sdFsW7q2-G0CTqNWDpJip1zu2rbeVdVZen9P80HfLM5jA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models</title><source>NORA - Norwegian Open Research Archives</source><creator>Birkeland Abrahamsen, Nils-Gunnar ; Nylén-Forthun, Emil ; Møller, Mats ; de Lange, Petter Eilif ; Risstad, Morten</creator><creatorcontrib>Birkeland Abrahamsen, Nils-Gunnar ; Nylén-Forthun, Emil ; Møller, Mats ; de Lange, Petter Eilif ; Risstad, Morten</creatorcontrib><description>This paper proposes an explicable early warning machine learning model for predicting financial distress, which generalizes across listed Nordic corporations. We develop a novel dataset, covering the period from Q1 2001 to Q2 2022, in which we combine idiosyncratic quarterly financial statement data, information from financial markets, and indicators of macroeconomic trends. The preferred LightGBM model, whose features are selected by applying explainable artificial intelligence, outperforms the benchmark models by a notable margin across evaluation metrics. We find that features related to liquidity, solvency, and size are highly important indicators of financial health and thus crucial variables for forecasting financial distress. Furthermore, we show that explicitly accounting for seasonality, in combination with entity, market, and macro information, improves model performance.</description><language>eng</language><publisher>MDPI</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,778,883,26550</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3155443$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Birkeland Abrahamsen, Nils-Gunnar</creatorcontrib><creatorcontrib>Nylén-Forthun, Emil</creatorcontrib><creatorcontrib>Møller, Mats</creatorcontrib><creatorcontrib>de Lange, Petter Eilif</creatorcontrib><creatorcontrib>Risstad, Morten</creatorcontrib><title>Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models</title><description>This paper proposes an explicable early warning machine learning model for predicting financial distress, which generalizes across listed Nordic corporations. We develop a novel dataset, covering the period from Q1 2001 to Q2 2022, in which we combine idiosyncratic quarterly financial statement data, information from financial markets, and indicators of macroeconomic trends. The preferred LightGBM model, whose features are selected by applying explainable artificial intelligence, outperforms the benchmark models by a notable margin across evaluation metrics. We find that features related to liquidity, solvency, and size are highly important indicators of financial health and thus crucial variables for forecasting financial distress. Furthermore, we show that explicitly accounting for seasonality, in combination with entity, market, and macro information, improves model performance.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjTEKwkAQANNYiPqH9QGC5yWNrSZYGLEQxCosl41ZOPdg9xp_b0AfYDUwDMy8eDQsKIExwpEtK5nBVannkDkJsEAeCS5JJ2N7qFHjG-6owvI0GDS9oMUwshCc6auhTT1FWxazAaPR6sdFsW7q2-G0CTqNWDpJip1zu2rbeVdVZen9P80HfLM5jA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Birkeland Abrahamsen, Nils-Gunnar</creator><creator>Nylén-Forthun, Emil</creator><creator>Møller, Mats</creator><creator>de Lange, Petter Eilif</creator><creator>Risstad, Morten</creator><general>MDPI</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models</title><author>Birkeland Abrahamsen, Nils-Gunnar ; Nylén-Forthun, Emil ; Møller, Mats ; de Lange, Petter Eilif ; Risstad, Morten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31554433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Birkeland Abrahamsen, Nils-Gunnar</creatorcontrib><creatorcontrib>Nylén-Forthun, Emil</creatorcontrib><creatorcontrib>Møller, Mats</creatorcontrib><creatorcontrib>de Lange, Petter Eilif</creatorcontrib><creatorcontrib>Risstad, Morten</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Birkeland Abrahamsen, Nils-Gunnar</au><au>Nylén-Forthun, Emil</au><au>Møller, Mats</au><au>de Lange, Petter Eilif</au><au>Risstad, Morten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models</atitle><date>2024</date><risdate>2024</risdate><abstract>This paper proposes an explicable early warning machine learning model for predicting financial distress, which generalizes across listed Nordic corporations. We develop a novel dataset, covering the period from Q1 2001 to Q2 2022, in which we combine idiosyncratic quarterly financial statement data, information from financial markets, and indicators of macroeconomic trends. The preferred LightGBM model, whose features are selected by applying explainable artificial intelligence, outperforms the benchmark models by a notable margin across evaluation metrics. We find that features related to liquidity, solvency, and size are highly important indicators of financial health and thus crucial variables for forecasting financial distress. Furthermore, we show that explicitly accounting for seasonality, in combination with entity, market, and macro information, improves model performance.</abstract><pub>MDPI</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3155443
source NORA - Norwegian Open Research Archives
title Financial Distress Prediction in the Nordics: Early Warnings from Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Financial%20Distress%20Prediction%20in%20the%20Nordics:%20Early%20Warnings%20from%20Machine%20Learning%20Models&rft.au=Birkeland%20Abrahamsen,%20Nils-Gunnar&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3155443%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true