Spatio-temporal visual learning for home-based monitoring

This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Djenouri, Youcef, Belbachir, Nabil, Cano, Alberto, Belhadi, Asma
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Djenouri, Youcef
Belbachir, Nabil
Cano, Alberto
Belhadi, Asma
description This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network (CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned visual features are then fed into the transformer, which captures temporal information by observing the sensor status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the recent baseline HM solutions.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3145859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3145859</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31458593</originalsourceid><addsrcrecordid>eNrjZLAMLkgsyczXLUnNLcgvSsxRKMssLgVSOamJRXmZeekKaflFChn5uam6SYnFqSkKufl5mSX5RUAZHgbWtMSc4lReKM3NoOjmGuLsoZtclFlckpkXnwc0L97Q0MjUIN7Y0MTUwtTSmBg1AGMZLrk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatio-temporal visual learning for home-based monitoring</title><source>NORA - Norwegian Open Research Archives</source><creator>Djenouri, Youcef ; Belbachir, Nabil ; Cano, Alberto ; Belhadi, Asma</creator><creatorcontrib>Djenouri, Youcef ; Belbachir, Nabil ; Cano, Alberto ; Belhadi, Asma</creatorcontrib><description>This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network (CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned visual features are then fed into the transformer, which captures temporal information by observing the sensor status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the recent baseline HM solutions.</description><language>eng</language><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3145859$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Djenouri, Youcef</creatorcontrib><creatorcontrib>Belbachir, Nabil</creatorcontrib><creatorcontrib>Cano, Alberto</creatorcontrib><creatorcontrib>Belhadi, Asma</creatorcontrib><title>Spatio-temporal visual learning for home-based monitoring</title><description>This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network (CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned visual features are then fed into the transformer, which captures temporal information by observing the sensor status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the recent baseline HM solutions.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZLAMLkgsyczXLUnNLcgvSsxRKMssLgVSOamJRXmZeekKaflFChn5uam6SYnFqSkKufl5mSX5RUAZHgbWtMSc4lReKM3NoOjmGuLsoZtclFlckpkXnwc0L97Q0MjUIN7Y0MTUwtTSmBg1AGMZLrk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Djenouri, Youcef</creator><creator>Belbachir, Nabil</creator><creator>Cano, Alberto</creator><creator>Belhadi, Asma</creator><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Spatio-temporal visual learning for home-based monitoring</title><author>Djenouri, Youcef ; Belbachir, Nabil ; Cano, Alberto ; Belhadi, Asma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31458593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Djenouri, Youcef</creatorcontrib><creatorcontrib>Belbachir, Nabil</creatorcontrib><creatorcontrib>Cano, Alberto</creatorcontrib><creatorcontrib>Belhadi, Asma</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Djenouri, Youcef</au><au>Belbachir, Nabil</au><au>Cano, Alberto</au><au>Belhadi, Asma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-temporal visual learning for home-based monitoring</atitle><date>2024</date><risdate>2024</risdate><abstract>This paper introduces a novel concept for Home-based Monitoring (HM) that enables robust analysis and understanding of activities towards improved caring and safety. Spatio-Temporal Visual Learning for HM (STVL-HM) is a novel method that learns from sensor data that is jointly represented in space and time in order to robustify the HM process. We propose a hybrid model based on a Convolution Neural Network (CNN) and Transformers. The CNN first learns the visual spatial features from various sensor data. The learned visual features are then fed into the transformer, which captures temporal information by observing the sensor status at various timestamps. STVL-HM has been tested using Kinetics-400, the real use case of human activity recognition scenario for HM data. The results reveal the clear superiority of the STVL-HM compared to the recent baseline HM solutions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3145859
source NORA - Norwegian Open Research Archives
title Spatio-temporal visual learning for home-based monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-temporal%20visual%20learning%20for%20home-based%20monitoring&rft.au=Djenouri,%20Youcef&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3145859%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true