Locally Robust Inference for Non-Gaussian SVAR models

All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Adam, Mesters, Geert, Hoesch, Lukas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lee, Adam
Mesters, Geert
Hoesch, Lukas
description All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3136124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3136124</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31361243</originalsourceid><addsrcrecordid>eNrjZDD1yU9OzMmpVAjKTyotLlHwzEtLLUrNS05VSMsvUvDLz9N1TywtLs5MzFMIDnMMUsjNT0nNKeZhYE1LzClO5YXS3AyKbq4hzh66yUWZxSWZefF5-UWJ8YaGRqYG8caGxmaGRibGxKgBAANMK-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally Robust Inference for Non-Gaussian SVAR models</title><source>NORA - Norwegian Open Research Archives</source><creator>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</creator><creatorcontrib>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</creatorcontrib><description>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</description><language>eng</language><publisher>Econometric Society</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3136124$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lee, Adam</creatorcontrib><creatorcontrib>Mesters, Geert</creatorcontrib><creatorcontrib>Hoesch, Lukas</creatorcontrib><title>Locally Robust Inference for Non-Gaussian SVAR models</title><description>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZDD1yU9OzMmpVAjKTyotLlHwzEtLLUrNS05VSMsvUvDLz9N1TywtLs5MzFMIDnMMUsjNT0nNKeZhYE1LzClO5YXS3AyKbq4hzh66yUWZxSWZefF5-UWJ8YaGRqYG8caGxmaGRibGxKgBAANMK-g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Adam</creator><creator>Mesters, Geert</creator><creator>Hoesch, Lukas</creator><general>Econometric Society</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Locally Robust Inference for Non-Gaussian SVAR models</title><author>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31361243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lee, Adam</creatorcontrib><creatorcontrib>Mesters, Geert</creatorcontrib><creatorcontrib>Hoesch, Lukas</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Adam</au><au>Mesters, Geert</au><au>Hoesch, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Robust Inference for Non-Gaussian SVAR models</atitle><date>2024</date><risdate>2024</risdate><abstract>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</abstract><pub>Econometric Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3136124
source NORA - Norwegian Open Research Archives
title Locally Robust Inference for Non-Gaussian SVAR models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Robust%20Inference%20for%20Non-Gaussian%20SVAR%20models&rft.au=Lee,%20Adam&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3136124%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true