Locally Robust Inference for Non-Gaussian SVAR models
All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lee, Adam Mesters, Geert Hoesch, Lukas |
description | All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3136124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3136124</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31361243</originalsourceid><addsrcrecordid>eNrjZDD1yU9OzMmpVAjKTyotLlHwzEtLLUrNS05VSMsvUvDLz9N1TywtLs5MzFMIDnMMUsjNT0nNKeZhYE1LzClO5YXS3AyKbq4hzh66yUWZxSWZefF5-UWJ8YaGRqYG8caGxmaGRibGxKgBAANMK-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally Robust Inference for Non-Gaussian SVAR models</title><source>NORA - Norwegian Open Research Archives</source><creator>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</creator><creatorcontrib>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</creatorcontrib><description>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</description><language>eng</language><publisher>Econometric Society</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3136124$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lee, Adam</creatorcontrib><creatorcontrib>Mesters, Geert</creatorcontrib><creatorcontrib>Hoesch, Lukas</creatorcontrib><title>Locally Robust Inference for Non-Gaussian SVAR models</title><description>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZDD1yU9OzMmpVAjKTyotLlHwzEtLLUrNS05VSMsvUvDLz9N1TywtLs5MzFMIDnMMUsjNT0nNKeZhYE1LzClO5YXS3AyKbq4hzh66yUWZxSWZefF5-UWJ8YaGRqYG8caGxmaGRibGxKgBAANMK-g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Adam</creator><creator>Mesters, Geert</creator><creator>Hoesch, Lukas</creator><general>Econometric Society</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Locally Robust Inference for Non-Gaussian SVAR models</title><author>Lee, Adam ; Mesters, Geert ; Hoesch, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31361243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lee, Adam</creatorcontrib><creatorcontrib>Mesters, Geert</creatorcontrib><creatorcontrib>Hoesch, Lukas</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Adam</au><au>Mesters, Geert</au><au>Hoesch, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Robust Inference for Non-Gaussian SVAR models</atitle><date>2024</date><risdate>2024</risdate><abstract>All parameters in structural vector autoregressive (SVAR) models are locally identified when the structural shocks are independent and follow non‐Gaussian distributions. Unfortunately, standard inference methods that exploit such features of the data for identification fail to yield correct coverage for structural functions of the model parameters when deviations from Gaussianity are small. To this extent, we propose a locally robust semiparametric approach to conduct hypothesis tests and construct confidence sets for structural functions in SVAR models. The methodology fully exploits non‐Gaussianity when it is present, but yields correct size/coverage for local‐to‐Gaussian densities. Empirically, we revisit two macroeconomic SVAR studies where we document mixed results. For the oil price model of Kilian and Murphy (2012), we find that non‐Gaussianity can robustly identify reasonable confidence sets, whereas for the labor supply–demand model of Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises highlight the importance of using weak identification robust methods to assess estimation uncertainty when using non‐Gaussianity for identification.</abstract><pub>Econometric Society</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3136124 |
source | NORA - Norwegian Open Research Archives |
title | Locally Robust Inference for Non-Gaussian SVAR models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Robust%20Inference%20for%20Non-Gaussian%20SVAR%20models&rft.au=Lee,%20Adam&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3136124%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |