Synergistic Effect of Bimetallic MOF Modified Separator for Long Cycle Life Lithium-Sulfur Batteries

Severe polysulfide dissolution and shuttling are the main challenges that plague the long cycle life and capacity retention of lithium-sulfur (Li-S) batteries. To address these challenges, efficient separators are designed and modified with a dual functional bimetallic metal-organic framework (MOF)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Razaq, Rameez, Mir Mehraj Ud Din, Mir Mehraj Ud Din, Småbråten, Didrik Rene, Eyupoglu, Volkan, Janakiram, Saravanan, Sunde, Tor Olav Løveng, Allahgholi, Nima, Rettenwander, Daniel, Deng, Liyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Severe polysulfide dissolution and shuttling are the main challenges that plague the long cycle life and capacity retention of lithium-sulfur (Li-S) batteries. To address these challenges, efficient separators are designed and modified with a dual functional bimetallic metal-organic framework (MOF). Flower-shaped bimetallic MOFs (i.e., Fe-ZIF-8) with nanostructured pores are synthesized at 35 °C in water by introducing dopant metal sites (Fe), which are then coated on a polypropylene (PP) separator to provide selective channels, thereby effectively inhibiting the migration of lithium polysulfides while allowing homogeneous transport of Li-ions. The active sites of the Fe-ZIF-8 enable electrocatalytic conversion, facilitating the conversion of lithium polysulfides. Moreover, the developed separator can prevent dendrite formation due to the uniform pore size and hence the even Li-ion transport and deposition. A coin cell using a Fe-ZIF-8/PP separator with S-loaded carbon cathode displayed a high cycle life of 1000 cycles with a high initial discharge capacity of 863 mAh g−1 at 0.5 C and a discharge capacity of 746 mAh g−1 at a high rate of 3 C. Promising specific capacity has been documented even under high sulfur loading of 5.0 mg cm−2 and electrolyte to the sulfur ratio (E/S) of 5 µL mg−1.