Oxidative degradation of triethylene glycol

Triethylene glycol (TEG) is unstable in the presence of oxygen and at high temperatures, though the degradation mechanisms occurring are not properly understood. In attempting to close some of the knowledge gaps, laboratory-scale degradation experiments have been conducted to assess the effect of te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Høisæter, Karen Karolina, Buvik, Vanja, Gonzalez, Susana Villa, Vevelstad, Solrun Johanne, Knuutila, Hanna Katariina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Høisæter, Karen Karolina
Buvik, Vanja
Gonzalez, Susana Villa
Vevelstad, Solrun Johanne
Knuutila, Hanna Katariina
description Triethylene glycol (TEG) is unstable in the presence of oxygen and at high temperatures, though the degradation mechanisms occurring are not properly understood. In attempting to close some of the knowledge gaps, laboratory-scale degradation experiments have been conducted to assess the effect of temperature and oxygen on the stability of TEG. Oxidative degradation experiments with TEG were conducted. The oxidative degradation mechanism seems to change with temperature and oxygen concentration. Multiple oxidative degradation compounds of TEG were detected and quantified. These included MEG, diethylene glycol (DEG), formic acid, acetic acid, glycolic acid, formaldehyde, acetaldehyde, and water. Formic acid, MEG, and DEG are the dominant identified degradation products both at high temperatures and at high oxygen concentrations. In addition, the formation of CO2 and larger polymeric glycols was confirmed. The carbon- and mass balance indicate unidentified degradation products in the liquid and gas phases.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3114903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3114903</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31149033</originalsourceid><addsrcrecordid>eNrjZND2r8hMSSzJLEtVSElNL0oEsfPzFPLTFEqKMlNLMipzUvNSFdJzKpPzc3gYWNMSc4pTeaE0N4Oim2uIs4duclFmcUlmXnxeflFivKGhkalBvLGhoYmlgbExMWoAgnUpYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxidative degradation of triethylene glycol</title><source>NORA - Norwegian Open Research Archives</source><creator>Høisæter, Karen Karolina ; Buvik, Vanja ; Gonzalez, Susana Villa ; Vevelstad, Solrun Johanne ; Knuutila, Hanna Katariina</creator><creatorcontrib>Høisæter, Karen Karolina ; Buvik, Vanja ; Gonzalez, Susana Villa ; Vevelstad, Solrun Johanne ; Knuutila, Hanna Katariina</creatorcontrib><description>Triethylene glycol (TEG) is unstable in the presence of oxygen and at high temperatures, though the degradation mechanisms occurring are not properly understood. In attempting to close some of the knowledge gaps, laboratory-scale degradation experiments have been conducted to assess the effect of temperature and oxygen on the stability of TEG. Oxidative degradation experiments with TEG were conducted. The oxidative degradation mechanism seems to change with temperature and oxygen concentration. Multiple oxidative degradation compounds of TEG were detected and quantified. These included MEG, diethylene glycol (DEG), formic acid, acetic acid, glycolic acid, formaldehyde, acetaldehyde, and water. Formic acid, MEG, and DEG are the dominant identified degradation products both at high temperatures and at high oxygen concentrations. In addition, the formation of CO2 and larger polymeric glycols was confirmed. The carbon- and mass balance indicate unidentified degradation products in the liquid and gas phases.</description><language>eng</language><publisher>Elsevier</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3114903$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Høisæter, Karen Karolina</creatorcontrib><creatorcontrib>Buvik, Vanja</creatorcontrib><creatorcontrib>Gonzalez, Susana Villa</creatorcontrib><creatorcontrib>Vevelstad, Solrun Johanne</creatorcontrib><creatorcontrib>Knuutila, Hanna Katariina</creatorcontrib><title>Oxidative degradation of triethylene glycol</title><description>Triethylene glycol (TEG) is unstable in the presence of oxygen and at high temperatures, though the degradation mechanisms occurring are not properly understood. In attempting to close some of the knowledge gaps, laboratory-scale degradation experiments have been conducted to assess the effect of temperature and oxygen on the stability of TEG. Oxidative degradation experiments with TEG were conducted. The oxidative degradation mechanism seems to change with temperature and oxygen concentration. Multiple oxidative degradation compounds of TEG were detected and quantified. These included MEG, diethylene glycol (DEG), formic acid, acetic acid, glycolic acid, formaldehyde, acetaldehyde, and water. Formic acid, MEG, and DEG are the dominant identified degradation products both at high temperatures and at high oxygen concentrations. In addition, the formation of CO2 and larger polymeric glycols was confirmed. The carbon- and mass balance indicate unidentified degradation products in the liquid and gas phases.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZND2r8hMSSzJLEtVSElNL0oEsfPzFPLTFEqKMlNLMipzUvNSFdJzKpPzc3gYWNMSc4pTeaE0N4Oim2uIs4duclFmcUlmXnxeflFivKGhkalBvLGhoYmlgbExMWoAgnUpYw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Høisæter, Karen Karolina</creator><creator>Buvik, Vanja</creator><creator>Gonzalez, Susana Villa</creator><creator>Vevelstad, Solrun Johanne</creator><creator>Knuutila, Hanna Katariina</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Oxidative degradation of triethylene glycol</title><author>Høisæter, Karen Karolina ; Buvik, Vanja ; Gonzalez, Susana Villa ; Vevelstad, Solrun Johanne ; Knuutila, Hanna Katariina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31149033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Høisæter, Karen Karolina</creatorcontrib><creatorcontrib>Buvik, Vanja</creatorcontrib><creatorcontrib>Gonzalez, Susana Villa</creatorcontrib><creatorcontrib>Vevelstad, Solrun Johanne</creatorcontrib><creatorcontrib>Knuutila, Hanna Katariina</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Høisæter, Karen Karolina</au><au>Buvik, Vanja</au><au>Gonzalez, Susana Villa</au><au>Vevelstad, Solrun Johanne</au><au>Knuutila, Hanna Katariina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative degradation of triethylene glycol</atitle><date>2024</date><risdate>2024</risdate><abstract>Triethylene glycol (TEG) is unstable in the presence of oxygen and at high temperatures, though the degradation mechanisms occurring are not properly understood. In attempting to close some of the knowledge gaps, laboratory-scale degradation experiments have been conducted to assess the effect of temperature and oxygen on the stability of TEG. Oxidative degradation experiments with TEG were conducted. The oxidative degradation mechanism seems to change with temperature and oxygen concentration. Multiple oxidative degradation compounds of TEG were detected and quantified. These included MEG, diethylene glycol (DEG), formic acid, acetic acid, glycolic acid, formaldehyde, acetaldehyde, and water. Formic acid, MEG, and DEG are the dominant identified degradation products both at high temperatures and at high oxygen concentrations. In addition, the formation of CO2 and larger polymeric glycols was confirmed. The carbon- and mass balance indicate unidentified degradation products in the liquid and gas phases.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3114903
source NORA - Norwegian Open Research Archives
title Oxidative degradation of triethylene glycol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20degradation%20of%20triethylene%20glycol&rft.au=H%C3%B8is%C3%A6ter,%20Karen%20Karolina&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3114903%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true