Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions

A framework characterizing the degradation of wind turbines for use in multiple-input damage-aware farm control is suggested. The focus is on the fatigue damage of the powertrain (drivetrain + generator) system, but the methodology may be extended to other components. A database of steady-state dama...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khazaeli Moghadam, Farid, Gao, Zhen, Chabaud, Valentin Bruno, Chapaloglou, Spyridon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Khazaeli Moghadam, Farid
Gao, Zhen
Chabaud, Valentin Bruno
Chapaloglou, Spyridon
description A framework characterizing the degradation of wind turbines for use in multiple-input damage-aware farm control is suggested. The focus is on the fatigue damage of the powertrain (drivetrain + generator) system, but the methodology may be extended to other components. A database of steady-state damage analyses for different operating conditions (average wind speeds, turbulence levels, power demands, and yaw misalignment angles) using aero-hydro-servo-elastic simulations is first generated. Then, a weighted damage index based on probabilistic long-term fatigue damage analysis of the powertrain system components is suggested and used to represent degradation at the farm level for control purposes. The focus is on curtailed conditions where the farm controller dispatches power commands to individual turbines in order to track a demanded power reference (rather than seeking to maximize power) at the farm level. As a secondary objective, the controller seeks to mitigate degradation through a smart combination of power commands and yaw offset angles, making use of the weighted degradation index. The potential of the proposed approach is demonstrated through a case study on the TotalControl Reference Wind Power Plant in a FLORIS-based simulation framework. The proposed farm controller is compared with the conventional one without damage mitigation feature and with damage mitigation but without yaw angle as the control input. It is found that combining yawing and downregulation effectively slows down degradation on the main bearing and powertrain as a whole.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3113056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3113056</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31130563</originalsourceid><addsrcrecordid>eNqNi0sKAjEQBWfjQtQ7tAcQJg7jBQbFA7hxFZp8hoakWzqRXF8DHsBVPYpX2wGf2CBTwUQr58AViOElLWhV_E4fVkWPlYQhiw-JeIUoCo3YQ0TN4ISrSuqhe2tFSsF36alXZT9sIqYSDj_uhuPt-ljuJ6dUKrFlUbTGnOfRTsZM43yZ_vl8AF1tPfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions</title><source>NORA - Norwegian Open Research Archives</source><creator>Khazaeli Moghadam, Farid ; Gao, Zhen ; Chabaud, Valentin Bruno ; Chapaloglou, Spyridon</creator><creatorcontrib>Khazaeli Moghadam, Farid ; Gao, Zhen ; Chabaud, Valentin Bruno ; Chapaloglou, Spyridon</creatorcontrib><description>A framework characterizing the degradation of wind turbines for use in multiple-input damage-aware farm control is suggested. The focus is on the fatigue damage of the powertrain (drivetrain + generator) system, but the methodology may be extended to other components. A database of steady-state damage analyses for different operating conditions (average wind speeds, turbulence levels, power demands, and yaw misalignment angles) using aero-hydro-servo-elastic simulations is first generated. Then, a weighted damage index based on probabilistic long-term fatigue damage analysis of the powertrain system components is suggested and used to represent degradation at the farm level for control purposes. The focus is on curtailed conditions where the farm controller dispatches power commands to individual turbines in order to track a demanded power reference (rather than seeking to maximize power) at the farm level. As a secondary objective, the controller seeks to mitigate degradation through a smart combination of power commands and yaw offset angles, making use of the weighted degradation index. The potential of the proposed approach is demonstrated through a case study on the TotalControl Reference Wind Power Plant in a FLORIS-based simulation framework. The proposed farm controller is compared with the conventional one without damage mitigation feature and with damage mitigation but without yaw angle as the control input. It is found that combining yawing and downregulation effectively slows down degradation on the main bearing and powertrain as a whole.</description><language>eng</language><publisher>Frontiers</publisher><creationdate>2024</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3113056$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khazaeli Moghadam, Farid</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Chabaud, Valentin Bruno</creatorcontrib><creatorcontrib>Chapaloglou, Spyridon</creatorcontrib><title>Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions</title><description>A framework characterizing the degradation of wind turbines for use in multiple-input damage-aware farm control is suggested. The focus is on the fatigue damage of the powertrain (drivetrain + generator) system, but the methodology may be extended to other components. A database of steady-state damage analyses for different operating conditions (average wind speeds, turbulence levels, power demands, and yaw misalignment angles) using aero-hydro-servo-elastic simulations is first generated. Then, a weighted damage index based on probabilistic long-term fatigue damage analysis of the powertrain system components is suggested and used to represent degradation at the farm level for control purposes. The focus is on curtailed conditions where the farm controller dispatches power commands to individual turbines in order to track a demanded power reference (rather than seeking to maximize power) at the farm level. As a secondary objective, the controller seeks to mitigate degradation through a smart combination of power commands and yaw offset angles, making use of the weighted degradation index. The potential of the proposed approach is demonstrated through a case study on the TotalControl Reference Wind Power Plant in a FLORIS-based simulation framework. The proposed farm controller is compared with the conventional one without damage mitigation feature and with damage mitigation but without yaw angle as the control input. It is found that combining yawing and downregulation effectively slows down degradation on the main bearing and powertrain as a whole.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNi0sKAjEQBWfjQtQ7tAcQJg7jBQbFA7hxFZp8hoakWzqRXF8DHsBVPYpX2wGf2CBTwUQr58AViOElLWhV_E4fVkWPlYQhiw-JeIUoCo3YQ0TN4ISrSuqhe2tFSsF36alXZT9sIqYSDj_uhuPt-ljuJ6dUKrFlUbTGnOfRTsZM43yZ_vl8AF1tPfQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Khazaeli Moghadam, Farid</creator><creator>Gao, Zhen</creator><creator>Chabaud, Valentin Bruno</creator><creator>Chapaloglou, Spyridon</creator><general>Frontiers</general><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions</title><author>Khazaeli Moghadam, Farid ; Gao, Zhen ; Chabaud, Valentin Bruno ; Chapaloglou, Spyridon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31130563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khazaeli Moghadam, Farid</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Chabaud, Valentin Bruno</creatorcontrib><creatorcontrib>Chapaloglou, Spyridon</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khazaeli Moghadam, Farid</au><au>Gao, Zhen</au><au>Chabaud, Valentin Bruno</au><au>Chapaloglou, Spyridon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions</atitle><date>2024</date><risdate>2024</risdate><abstract>A framework characterizing the degradation of wind turbines for use in multiple-input damage-aware farm control is suggested. The focus is on the fatigue damage of the powertrain (drivetrain + generator) system, but the methodology may be extended to other components. A database of steady-state damage analyses for different operating conditions (average wind speeds, turbulence levels, power demands, and yaw misalignment angles) using aero-hydro-servo-elastic simulations is first generated. Then, a weighted damage index based on probabilistic long-term fatigue damage analysis of the powertrain system components is suggested and used to represent degradation at the farm level for control purposes. The focus is on curtailed conditions where the farm controller dispatches power commands to individual turbines in order to track a demanded power reference (rather than seeking to maximize power) at the farm level. As a secondary objective, the controller seeks to mitigate degradation through a smart combination of power commands and yaw offset angles, making use of the weighted degradation index. The potential of the proposed approach is demonstrated through a case study on the TotalControl Reference Wind Power Plant in a FLORIS-based simulation framework. The proposed farm controller is compared with the conventional one without damage mitigation feature and with damage mitigation but without yaw angle as the control input. It is found that combining yawing and downregulation effectively slows down degradation on the main bearing and powertrain as a whole.</abstract><pub>Frontiers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3113056
source NORA - Norwegian Open Research Archives
title Yaw misalignment in powertrain degradation modeling for wind farm control in curtailed conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yaw%20misalignment%20in%20powertrain%20degradation%20modeling%20for%20wind%20farm%20control%20in%20curtailed%20conditions&rft.au=Khazaeli%20Moghadam,%20Farid&rft.date=2024&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3113056%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true