Bacterial bioindicators enable biological status classification along the continental Danube river

Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predicto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fontaine, Laurent, Pin, Lorenzo, Savio, Domenico, Friberg, Nikolai, Kirschner, Alexander K. T, Farnleitner, Andreas H, Eiler, Alexander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fontaine, Laurent
Pin, Lorenzo
Savio, Domenico
Friberg, Nikolai
Kirschner, Alexander K. T
Farnleitner, Andreas H
Eiler, Alexander
description Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3102486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3102486</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31024863</originalsourceid><addsrcrecordid>eNqNy00KwkAMhuFuXIh6h3gAoT8qrv3DA7gvmTGtgSGBSer5nYIHcPXBy_Mtq3DG6JQZEwRWlhdHdM0GJBgSzTHpWGICc_TJICY042F2rAKYVEbwN0FUcRYSL_aKMgWCzB_K62oxYDLa_HZVbe-35-Wxi5mtPHrRjH3TtIe675q63Z-O3T_mC7LJPmo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><source>NORA - Norwegian Open Research Archives</source><creator>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</creator><creatorcontrib>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</creatorcontrib><description>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</description><language>eng</language><publisher>Nature</publisher><creationdate>2023</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26565</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3102486$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fontaine, Laurent</creatorcontrib><creatorcontrib>Pin, Lorenzo</creatorcontrib><creatorcontrib>Savio, Domenico</creatorcontrib><creatorcontrib>Friberg, Nikolai</creatorcontrib><creatorcontrib>Kirschner, Alexander K. T</creatorcontrib><creatorcontrib>Farnleitner, Andreas H</creatorcontrib><creatorcontrib>Eiler, Alexander</creatorcontrib><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><description>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNy00KwkAMhuFuXIh6h3gAoT8qrv3DA7gvmTGtgSGBSer5nYIHcPXBy_Mtq3DG6JQZEwRWlhdHdM0GJBgSzTHpWGICc_TJICY042F2rAKYVEbwN0FUcRYSL_aKMgWCzB_K62oxYDLa_HZVbe-35-Wxi5mtPHrRjH3TtIe675q63Z-O3T_mC7LJPmo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fontaine, Laurent</creator><creator>Pin, Lorenzo</creator><creator>Savio, Domenico</creator><creator>Friberg, Nikolai</creator><creator>Kirschner, Alexander K. T</creator><creator>Farnleitner, Andreas H</creator><creator>Eiler, Alexander</creator><general>Nature</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><author>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31024863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, Laurent</creatorcontrib><creatorcontrib>Pin, Lorenzo</creatorcontrib><creatorcontrib>Savio, Domenico</creatorcontrib><creatorcontrib>Friberg, Nikolai</creatorcontrib><creatorcontrib>Kirschner, Alexander K. T</creatorcontrib><creatorcontrib>Farnleitner, Andreas H</creatorcontrib><creatorcontrib>Eiler, Alexander</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontaine, Laurent</au><au>Pin, Lorenzo</au><au>Savio, Domenico</au><au>Friberg, Nikolai</au><au>Kirschner, Alexander K. T</au><au>Farnleitner, Andreas H</au><au>Eiler, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial bioindicators enable biological status classification along the continental Danube river</atitle><date>2023</date><risdate>2023</risdate><abstract>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</abstract><pub>Nature</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3102486
source NORA - Norwegian Open Research Archives
title Bacterial bioindicators enable biological status classification along the continental Danube river
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20bioindicators%20enable%20biological%20status%20classification%20along%20the%20continental%20Danube%20river&rft.au=Fontaine,%20Laurent&rft.date=2023&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3102486%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true