Bacterial bioindicators enable biological status classification along the continental Danube river
Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predicto...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Fontaine, Laurent Pin, Lorenzo Savio, Domenico Friberg, Nikolai Kirschner, Alexander K. T Farnleitner, Andreas H Eiler, Alexander |
description | Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3102486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3102486</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_31024863</originalsourceid><addsrcrecordid>eNqNy00KwkAMhuFuXIh6h3gAoT8qrv3DA7gvmTGtgSGBSer5nYIHcPXBy_Mtq3DG6JQZEwRWlhdHdM0GJBgSzTHpWGICc_TJICY042F2rAKYVEbwN0FUcRYSL_aKMgWCzB_K62oxYDLa_HZVbe-35-Wxi5mtPHrRjH3TtIe675q63Z-O3T_mC7LJPmo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><source>NORA - Norwegian Open Research Archives</source><creator>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</creator><creatorcontrib>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</creatorcontrib><description>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</description><language>eng</language><publisher>Nature</publisher><creationdate>2023</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26565</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3102486$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fontaine, Laurent</creatorcontrib><creatorcontrib>Pin, Lorenzo</creatorcontrib><creatorcontrib>Savio, Domenico</creatorcontrib><creatorcontrib>Friberg, Nikolai</creatorcontrib><creatorcontrib>Kirschner, Alexander K. T</creatorcontrib><creatorcontrib>Farnleitner, Andreas H</creatorcontrib><creatorcontrib>Eiler, Alexander</creatorcontrib><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><description>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNy00KwkAMhuFuXIh6h3gAoT8qrv3DA7gvmTGtgSGBSer5nYIHcPXBy_Mtq3DG6JQZEwRWlhdHdM0GJBgSzTHpWGICc_TJICY042F2rAKYVEbwN0FUcRYSL_aKMgWCzB_K62oxYDLa_HZVbe-35-Wxi5mtPHrRjH3TtIe675q63Z-O3T_mC7LJPmo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fontaine, Laurent</creator><creator>Pin, Lorenzo</creator><creator>Savio, Domenico</creator><creator>Friberg, Nikolai</creator><creator>Kirschner, Alexander K. T</creator><creator>Farnleitner, Andreas H</creator><creator>Eiler, Alexander</creator><general>Nature</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>Bacterial bioindicators enable biological status classification along the continental Danube river</title><author>Fontaine, Laurent ; Pin, Lorenzo ; Savio, Domenico ; Friberg, Nikolai ; Kirschner, Alexander K. T ; Farnleitner, Andreas H ; Eiler, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_31024863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fontaine, Laurent</creatorcontrib><creatorcontrib>Pin, Lorenzo</creatorcontrib><creatorcontrib>Savio, Domenico</creatorcontrib><creatorcontrib>Friberg, Nikolai</creatorcontrib><creatorcontrib>Kirschner, Alexander K. T</creatorcontrib><creatorcontrib>Farnleitner, Andreas H</creatorcontrib><creatorcontrib>Eiler, Alexander</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fontaine, Laurent</au><au>Pin, Lorenzo</au><au>Savio, Domenico</au><au>Friberg, Nikolai</au><au>Kirschner, Alexander K. T</au><au>Farnleitner, Andreas H</au><au>Eiler, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial bioindicators enable biological status classification along the continental Danube river</atitle><date>2023</date><risdate>2023</risdate><abstract>Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems. Bacterial beta-diversity dynamics follow environmental gradients and the observed associations highlight potential bioindicators for ecological outcomes. Spatio-temporal links spanning the microbial communities along the river allow accurate prediction of downstream biological status from upstream information. Network analysis on amplicon sequence veariants identify as good indicators genera Fluviicola, Acinetobacter, Flavobacterium, and Rhodoluna, and reveal informational redundancy among taxa, which coincides with taxonomic relatedness. The redundancy among bacterial bioindicators reveals mutually exclusive taxa, which allow accurate biological status modeling using as few as 2–3 amplicon sequence variants. As such our models show that using a few bacterial amplicon sequence variants from globally distributed genera allows for biological status assessment along river systems.</abstract><pub>Nature</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3102486 |
source | NORA - Norwegian Open Research Archives |
title | Bacterial bioindicators enable biological status classification along the continental Danube river |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20bioindicators%20enable%20biological%20status%20classification%20along%20the%20continental%20Danube%20river&rft.au=Fontaine,%20Laurent&rft.date=2023&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3102486%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |