On Numerical Approximations of Fractional and Nonlocal Mean Field Games
We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and con...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chowdhury, Indranil Ersland, Olav Jakobsen, Espen Robstad |
description | We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3055811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3055811</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30558113</originalsourceid><addsrcrecordid>eNrjZHD3z1PwK81NLcpMTsxRcCwoKMqvyMxNLMnMzytWyE9TcCtKTAZxgJKJeSkKfvl5Ofkglb6piXkKbpmpOSkK7om5qcU8DKxpiTnFqbxQmptB0c01xNlDN7kos7gkMy8-L78oMd7Q0MjUIN7YwNTUwtDQmBg1AAhMMrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><source>NORA - Norwegian Open Research Archives</source><creator>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</creator><creatorcontrib>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</creatorcontrib><description>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</description><language>eng</language><publisher>Springer</publisher><creationdate>2022</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3055811$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chowdhury, Indranil</creatorcontrib><creatorcontrib>Ersland, Olav</creatorcontrib><creatorcontrib>Jakobsen, Espen Robstad</creatorcontrib><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><description>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZHD3z1PwK81NLcpMTsxRcCwoKMqvyMxNLMnMzytWyE9TcCtKTAZxgJKJeSkKfvl5Ofkglb6piXkKbpmpOSkK7om5qcU8DKxpiTnFqbxQmptB0c01xNlDN7kos7gkMy8-L78oMd7Q0MjUIN7YwNTUwtDQmBg1AAhMMrY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chowdhury, Indranil</creator><creator>Ersland, Olav</creator><creator>Jakobsen, Espen Robstad</creator><general>Springer</general><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><author>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30558113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Indranil</creatorcontrib><creatorcontrib>Ersland, Olav</creatorcontrib><creatorcontrib>Jakobsen, Espen Robstad</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chowdhury, Indranil</au><au>Ersland, Olav</au><au>Jakobsen, Espen Robstad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</atitle><date>2022</date><risdate>2022</risdate><abstract>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3055811 |
source | NORA - Norwegian Open Research Archives |
title | On Numerical Approximations of Fractional and Nonlocal Mean Field Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Numerical%20Approximations%20of%20Fractional%20and%20Nonlocal%20Mean%20Field%20Games&rft.au=Chowdhury,%20Indranil&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3055811%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |