On Numerical Approximations of Fractional and Nonlocal Mean Field Games

We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chowdhury, Indranil, Ersland, Olav, Jakobsen, Espen Robstad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chowdhury, Indranil
Ersland, Olav
Jakobsen, Espen Robstad
description We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3055811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3055811</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30558113</originalsourceid><addsrcrecordid>eNrjZHD3z1PwK81NLcpMTsxRcCwoKMqvyMxNLMnMzytWyE9TcCtKTAZxgJKJeSkKfvl5Ofkglb6piXkKbpmpOSkK7om5qcU8DKxpiTnFqbxQmptB0c01xNlDN7kos7gkMy8-L78oMd7Q0MjUIN7YwNTUwtDQmBg1AAhMMrY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><source>NORA - Norwegian Open Research Archives</source><creator>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</creator><creatorcontrib>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</creatorcontrib><description>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</description><language>eng</language><publisher>Springer</publisher><creationdate>2022</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3055811$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chowdhury, Indranil</creatorcontrib><creatorcontrib>Ersland, Olav</creatorcontrib><creatorcontrib>Jakobsen, Espen Robstad</creatorcontrib><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><description>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZHD3z1PwK81NLcpMTsxRcCwoKMqvyMxNLMnMzytWyE9TcCtKTAZxgJKJeSkKfvl5Ofkglb6piXkKbpmpOSkK7om5qcU8DKxpiTnFqbxQmptB0c01xNlDN7kos7gkMy8-L78oMd7Q0MjUIN7YwNTUwtDQmBg1AAhMMrY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chowdhury, Indranil</creator><creator>Ersland, Olav</creator><creator>Jakobsen, Espen Robstad</creator><general>Springer</general><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</title><author>Chowdhury, Indranil ; Ersland, Olav ; Jakobsen, Espen Robstad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30558113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Indranil</creatorcontrib><creatorcontrib>Ersland, Olav</creatorcontrib><creatorcontrib>Jakobsen, Espen Robstad</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chowdhury, Indranil</au><au>Ersland, Olav</au><au>Jakobsen, Espen Robstad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Numerical Approximations of Fractional and Nonlocal Mean Field Games</atitle><date>2022</date><risdate>2022</risdate><abstract>We construct numerical approximations for Mean Field Games with fractional or nonlocal diffusions. The schemes are based on semi-Lagrangian approximations of the underlying control problems/games along with dual approximations of the distributions of agents. The methods are monotone, stable, and consistent, and we prove convergence along subsequences for (i) degenerate equations in one space dimension and (ii) nondegenerate equations in arbitrary dimensions. We also give results on full convergence and convergence to classical solutions. Numerical tests are implemented for a range of different nonlocal diffusions and support our analytical findings.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_3055811
source NORA - Norwegian Open Research Archives
title On Numerical Approximations of Fractional and Nonlocal Mean Field Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Numerical%20Approximations%20of%20Fractional%20and%20Nonlocal%20Mean%20Field%20Games&rft.au=Chowdhury,%20Indranil&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3055811%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true