Insights into the quantification and reporting of model-related uncertainty across different disciplines
Quantifying uncertainty associated with our models is the only way we can ex- press how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world im- pacts in diverse spheres, including conservation, epidemiology, clim...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Simmonds, Emily Grace Dunn-Sigouin, Etienne Adjei, Kwaku Peprah Andersen, Christoffer Wold Aspheim, Janne Cathrin Hetle Battistin, Claudia Bulso, Nicola Christensen, Hannah M Cretois, Benjamin Cubero, Ryan John Abat Davidovich, Ivan Andres Dickel, Lisa Dunn, Benjamin Adric Dyrstad, Karin Einum, Sigurd Giglio, Donata Gjerløw, Haakon Godefroidt, Amélie González-Gil, Ricardo Gonzalo Cogno, Soledad Große, Fabian Halloran, Paul Jensen, Mari Fjalstad Kennedy, John James Langsæther, Peter Egge Laverick, Jack H Lederberger, Debora Li, Camille Mandeville, Elizabeth G Mandeville, Caitlin Moe, Espen Schröder, Tobias Navarro Nunan, David Sicacha-Parada, Jorge Simpson, Melanie Rae Skarstein, Emma Sofie Spensberger, Clemens Stevens, Richard Subramanian, Aneesh C Svendsen, Lea Theisen, Ole Magnus Watret, Connor O'Hara, Robert B |
description | Quantifying uncertainty associated with our models is the only way we can ex-
press how much we know about any phenomenon. Incomplete consideration of
model-based uncertainties can lead to overstated conclusions with real-world im-
pacts in diverse spheres, including conservation, epidemiology, climate science,
and policy. Despite these potentially damaging consequences, we still know little
about how different fields quantify and report uncertainty. We introduce the
‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of
model-related uncertainty quantification from seven scientific fields, spanning
the biological, physical, and political sciences. Our interdisciplinary audit shows
no field fully considers all possible sources of uncertainty, but each has its own
best practices alongside shared outstanding challenges. We make ten easy-to-
implement recommendations to improve the consistency, completeness, and
clarity of reporting on model-related uncertainty. These recommendations serve
as a guide to best practices across scientific fields and expand our toolbox for
high-quality research. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3044484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3044484</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30444843</originalsourceid><addsrcrecordid>eNqNjDEOwkAMBNNQIOAP5gGREnJI9AgEPX1k3fmIpeALtlPwe1LwAKqdYmbX1XAX4-fgBixewAeC94zinDmicxFASaA0FXWWJ5QMr5JorJVGdEowSyR1XOoPYNRiBolzJiXxhSzyNLKQbatVxtFo99tNtb9eHudbHZVtue6lKPZtezg2fdeEEE6h-8f5An5cQQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into the quantification and reporting of model-related uncertainty across different disciplines</title><source>NORA - Norwegian Open Research Archives</source><creator>Simmonds, Emily Grace ; Dunn-Sigouin, Etienne ; Adjei, Kwaku Peprah ; Andersen, Christoffer Wold ; Aspheim, Janne Cathrin Hetle ; Battistin, Claudia ; Bulso, Nicola ; Christensen, Hannah M ; Cretois, Benjamin ; Cubero, Ryan John Abat ; Davidovich, Ivan Andres ; Dickel, Lisa ; Dunn, Benjamin Adric ; Dyrstad, Karin ; Einum, Sigurd ; Giglio, Donata ; Gjerløw, Haakon ; Godefroidt, Amélie ; González-Gil, Ricardo ; Gonzalo Cogno, Soledad ; Große, Fabian ; Halloran, Paul ; Jensen, Mari Fjalstad ; Kennedy, John James ; Langsæther, Peter Egge ; Laverick, Jack H ; Lederberger, Debora ; Li, Camille ; Mandeville, Elizabeth G ; Mandeville, Caitlin ; Moe, Espen ; Schröder, Tobias Navarro ; Nunan, David ; Sicacha-Parada, Jorge ; Simpson, Melanie Rae ; Skarstein, Emma Sofie ; Spensberger, Clemens ; Stevens, Richard ; Subramanian, Aneesh C ; Svendsen, Lea ; Theisen, Ole Magnus ; Watret, Connor ; O'Hara, Robert B</creator><creatorcontrib>Simmonds, Emily Grace ; Dunn-Sigouin, Etienne ; Adjei, Kwaku Peprah ; Andersen, Christoffer Wold ; Aspheim, Janne Cathrin Hetle ; Battistin, Claudia ; Bulso, Nicola ; Christensen, Hannah M ; Cretois, Benjamin ; Cubero, Ryan John Abat ; Davidovich, Ivan Andres ; Dickel, Lisa ; Dunn, Benjamin Adric ; Dyrstad, Karin ; Einum, Sigurd ; Giglio, Donata ; Gjerløw, Haakon ; Godefroidt, Amélie ; González-Gil, Ricardo ; Gonzalo Cogno, Soledad ; Große, Fabian ; Halloran, Paul ; Jensen, Mari Fjalstad ; Kennedy, John James ; Langsæther, Peter Egge ; Laverick, Jack H ; Lederberger, Debora ; Li, Camille ; Mandeville, Elizabeth G ; Mandeville, Caitlin ; Moe, Espen ; Schröder, Tobias Navarro ; Nunan, David ; Sicacha-Parada, Jorge ; Simpson, Melanie Rae ; Skarstein, Emma Sofie ; Spensberger, Clemens ; Stevens, Richard ; Subramanian, Aneesh C ; Svendsen, Lea ; Theisen, Ole Magnus ; Watret, Connor ; O'Hara, Robert B</creatorcontrib><description>Quantifying uncertainty associated with our models is the only way we can ex-
press how much we know about any phenomenon. Incomplete consideration of
model-based uncertainties can lead to overstated conclusions with real-world im-
pacts in diverse spheres, including conservation, epidemiology, climate science,
and policy. Despite these potentially damaging consequences, we still know little
about how different fields quantify and report uncertainty. We introduce the
‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of
model-related uncertainty quantification from seven scientific fields, spanning
the biological, physical, and political sciences. Our interdisciplinary audit shows
no field fully considers all possible sources of uncertainty, but each has its own
best practices alongside shared outstanding challenges. We make ten easy-to-
implement recommendations to improve the consistency, completeness, and
clarity of reporting on model-related uncertainty. These recommendations serve
as a guide to best practices across scientific fields and expand our toolbox for
high-quality research.</description><language>eng</language><creationdate>2022</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3044484$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Simmonds, Emily Grace</creatorcontrib><creatorcontrib>Dunn-Sigouin, Etienne</creatorcontrib><creatorcontrib>Adjei, Kwaku Peprah</creatorcontrib><creatorcontrib>Andersen, Christoffer Wold</creatorcontrib><creatorcontrib>Aspheim, Janne Cathrin Hetle</creatorcontrib><creatorcontrib>Battistin, Claudia</creatorcontrib><creatorcontrib>Bulso, Nicola</creatorcontrib><creatorcontrib>Christensen, Hannah M</creatorcontrib><creatorcontrib>Cretois, Benjamin</creatorcontrib><creatorcontrib>Cubero, Ryan John Abat</creatorcontrib><creatorcontrib>Davidovich, Ivan Andres</creatorcontrib><creatorcontrib>Dickel, Lisa</creatorcontrib><creatorcontrib>Dunn, Benjamin Adric</creatorcontrib><creatorcontrib>Dyrstad, Karin</creatorcontrib><creatorcontrib>Einum, Sigurd</creatorcontrib><creatorcontrib>Giglio, Donata</creatorcontrib><creatorcontrib>Gjerløw, Haakon</creatorcontrib><creatorcontrib>Godefroidt, Amélie</creatorcontrib><creatorcontrib>González-Gil, Ricardo</creatorcontrib><creatorcontrib>Gonzalo Cogno, Soledad</creatorcontrib><creatorcontrib>Große, Fabian</creatorcontrib><creatorcontrib>Halloran, Paul</creatorcontrib><creatorcontrib>Jensen, Mari Fjalstad</creatorcontrib><creatorcontrib>Kennedy, John James</creatorcontrib><creatorcontrib>Langsæther, Peter Egge</creatorcontrib><creatorcontrib>Laverick, Jack H</creatorcontrib><creatorcontrib>Lederberger, Debora</creatorcontrib><creatorcontrib>Li, Camille</creatorcontrib><creatorcontrib>Mandeville, Elizabeth G</creatorcontrib><creatorcontrib>Mandeville, Caitlin</creatorcontrib><creatorcontrib>Moe, Espen</creatorcontrib><creatorcontrib>Schröder, Tobias Navarro</creatorcontrib><creatorcontrib>Nunan, David</creatorcontrib><creatorcontrib>Sicacha-Parada, Jorge</creatorcontrib><creatorcontrib>Simpson, Melanie Rae</creatorcontrib><creatorcontrib>Skarstein, Emma Sofie</creatorcontrib><creatorcontrib>Spensberger, Clemens</creatorcontrib><creatorcontrib>Stevens, Richard</creatorcontrib><creatorcontrib>Subramanian, Aneesh C</creatorcontrib><creatorcontrib>Svendsen, Lea</creatorcontrib><creatorcontrib>Theisen, Ole Magnus</creatorcontrib><creatorcontrib>Watret, Connor</creatorcontrib><creatorcontrib>O'Hara, Robert B</creatorcontrib><title>Insights into the quantification and reporting of model-related uncertainty across different disciplines</title><description>Quantifying uncertainty associated with our models is the only way we can ex-
press how much we know about any phenomenon. Incomplete consideration of
model-based uncertainties can lead to overstated conclusions with real-world im-
pacts in diverse spheres, including conservation, epidemiology, climate science,
and policy. Despite these potentially damaging consequences, we still know little
about how different fields quantify and report uncertainty. We introduce the
‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of
model-related uncertainty quantification from seven scientific fields, spanning
the biological, physical, and political sciences. Our interdisciplinary audit shows
no field fully considers all possible sources of uncertainty, but each has its own
best practices alongside shared outstanding challenges. We make ten easy-to-
implement recommendations to improve the consistency, completeness, and
clarity of reporting on model-related uncertainty. These recommendations serve
as a guide to best practices across scientific fields and expand our toolbox for
high-quality research.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjDEOwkAMBNNQIOAP5gGREnJI9AgEPX1k3fmIpeALtlPwe1LwAKqdYmbX1XAX4-fgBixewAeC94zinDmicxFASaA0FXWWJ5QMr5JorJVGdEowSyR1XOoPYNRiBolzJiXxhSzyNLKQbatVxtFo99tNtb9eHudbHZVtue6lKPZtezg2fdeEEE6h-8f5An5cQQQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Simmonds, Emily Grace</creator><creator>Dunn-Sigouin, Etienne</creator><creator>Adjei, Kwaku Peprah</creator><creator>Andersen, Christoffer Wold</creator><creator>Aspheim, Janne Cathrin Hetle</creator><creator>Battistin, Claudia</creator><creator>Bulso, Nicola</creator><creator>Christensen, Hannah M</creator><creator>Cretois, Benjamin</creator><creator>Cubero, Ryan John Abat</creator><creator>Davidovich, Ivan Andres</creator><creator>Dickel, Lisa</creator><creator>Dunn, Benjamin Adric</creator><creator>Dyrstad, Karin</creator><creator>Einum, Sigurd</creator><creator>Giglio, Donata</creator><creator>Gjerløw, Haakon</creator><creator>Godefroidt, Amélie</creator><creator>González-Gil, Ricardo</creator><creator>Gonzalo Cogno, Soledad</creator><creator>Große, Fabian</creator><creator>Halloran, Paul</creator><creator>Jensen, Mari Fjalstad</creator><creator>Kennedy, John James</creator><creator>Langsæther, Peter Egge</creator><creator>Laverick, Jack H</creator><creator>Lederberger, Debora</creator><creator>Li, Camille</creator><creator>Mandeville, Elizabeth G</creator><creator>Mandeville, Caitlin</creator><creator>Moe, Espen</creator><creator>Schröder, Tobias Navarro</creator><creator>Nunan, David</creator><creator>Sicacha-Parada, Jorge</creator><creator>Simpson, Melanie Rae</creator><creator>Skarstein, Emma Sofie</creator><creator>Spensberger, Clemens</creator><creator>Stevens, Richard</creator><creator>Subramanian, Aneesh C</creator><creator>Svendsen, Lea</creator><creator>Theisen, Ole Magnus</creator><creator>Watret, Connor</creator><creator>O'Hara, Robert B</creator><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>Insights into the quantification and reporting of model-related uncertainty across different disciplines</title><author>Simmonds, Emily Grace ; Dunn-Sigouin, Etienne ; Adjei, Kwaku Peprah ; Andersen, Christoffer Wold ; Aspheim, Janne Cathrin Hetle ; Battistin, Claudia ; Bulso, Nicola ; Christensen, Hannah M ; Cretois, Benjamin ; Cubero, Ryan John Abat ; Davidovich, Ivan Andres ; Dickel, Lisa ; Dunn, Benjamin Adric ; Dyrstad, Karin ; Einum, Sigurd ; Giglio, Donata ; Gjerløw, Haakon ; Godefroidt, Amélie ; González-Gil, Ricardo ; Gonzalo Cogno, Soledad ; Große, Fabian ; Halloran, Paul ; Jensen, Mari Fjalstad ; Kennedy, John James ; Langsæther, Peter Egge ; Laverick, Jack H ; Lederberger, Debora ; Li, Camille ; Mandeville, Elizabeth G ; Mandeville, Caitlin ; Moe, Espen ; Schröder, Tobias Navarro ; Nunan, David ; Sicacha-Parada, Jorge ; Simpson, Melanie Rae ; Skarstein, Emma Sofie ; Spensberger, Clemens ; Stevens, Richard ; Subramanian, Aneesh C ; Svendsen, Lea ; Theisen, Ole Magnus ; Watret, Connor ; O'Hara, Robert B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30444843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Simmonds, Emily Grace</creatorcontrib><creatorcontrib>Dunn-Sigouin, Etienne</creatorcontrib><creatorcontrib>Adjei, Kwaku Peprah</creatorcontrib><creatorcontrib>Andersen, Christoffer Wold</creatorcontrib><creatorcontrib>Aspheim, Janne Cathrin Hetle</creatorcontrib><creatorcontrib>Battistin, Claudia</creatorcontrib><creatorcontrib>Bulso, Nicola</creatorcontrib><creatorcontrib>Christensen, Hannah M</creatorcontrib><creatorcontrib>Cretois, Benjamin</creatorcontrib><creatorcontrib>Cubero, Ryan John Abat</creatorcontrib><creatorcontrib>Davidovich, Ivan Andres</creatorcontrib><creatorcontrib>Dickel, Lisa</creatorcontrib><creatorcontrib>Dunn, Benjamin Adric</creatorcontrib><creatorcontrib>Dyrstad, Karin</creatorcontrib><creatorcontrib>Einum, Sigurd</creatorcontrib><creatorcontrib>Giglio, Donata</creatorcontrib><creatorcontrib>Gjerløw, Haakon</creatorcontrib><creatorcontrib>Godefroidt, Amélie</creatorcontrib><creatorcontrib>González-Gil, Ricardo</creatorcontrib><creatorcontrib>Gonzalo Cogno, Soledad</creatorcontrib><creatorcontrib>Große, Fabian</creatorcontrib><creatorcontrib>Halloran, Paul</creatorcontrib><creatorcontrib>Jensen, Mari Fjalstad</creatorcontrib><creatorcontrib>Kennedy, John James</creatorcontrib><creatorcontrib>Langsæther, Peter Egge</creatorcontrib><creatorcontrib>Laverick, Jack H</creatorcontrib><creatorcontrib>Lederberger, Debora</creatorcontrib><creatorcontrib>Li, Camille</creatorcontrib><creatorcontrib>Mandeville, Elizabeth G</creatorcontrib><creatorcontrib>Mandeville, Caitlin</creatorcontrib><creatorcontrib>Moe, Espen</creatorcontrib><creatorcontrib>Schröder, Tobias Navarro</creatorcontrib><creatorcontrib>Nunan, David</creatorcontrib><creatorcontrib>Sicacha-Parada, Jorge</creatorcontrib><creatorcontrib>Simpson, Melanie Rae</creatorcontrib><creatorcontrib>Skarstein, Emma Sofie</creatorcontrib><creatorcontrib>Spensberger, Clemens</creatorcontrib><creatorcontrib>Stevens, Richard</creatorcontrib><creatorcontrib>Subramanian, Aneesh C</creatorcontrib><creatorcontrib>Svendsen, Lea</creatorcontrib><creatorcontrib>Theisen, Ole Magnus</creatorcontrib><creatorcontrib>Watret, Connor</creatorcontrib><creatorcontrib>O'Hara, Robert B</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Simmonds, Emily Grace</au><au>Dunn-Sigouin, Etienne</au><au>Adjei, Kwaku Peprah</au><au>Andersen, Christoffer Wold</au><au>Aspheim, Janne Cathrin Hetle</au><au>Battistin, Claudia</au><au>Bulso, Nicola</au><au>Christensen, Hannah M</au><au>Cretois, Benjamin</au><au>Cubero, Ryan John Abat</au><au>Davidovich, Ivan Andres</au><au>Dickel, Lisa</au><au>Dunn, Benjamin Adric</au><au>Dyrstad, Karin</au><au>Einum, Sigurd</au><au>Giglio, Donata</au><au>Gjerløw, Haakon</au><au>Godefroidt, Amélie</au><au>González-Gil, Ricardo</au><au>Gonzalo Cogno, Soledad</au><au>Große, Fabian</au><au>Halloran, Paul</au><au>Jensen, Mari Fjalstad</au><au>Kennedy, John James</au><au>Langsæther, Peter Egge</au><au>Laverick, Jack H</au><au>Lederberger, Debora</au><au>Li, Camille</au><au>Mandeville, Elizabeth G</au><au>Mandeville, Caitlin</au><au>Moe, Espen</au><au>Schröder, Tobias Navarro</au><au>Nunan, David</au><au>Sicacha-Parada, Jorge</au><au>Simpson, Melanie Rae</au><au>Skarstein, Emma Sofie</au><au>Spensberger, Clemens</au><au>Stevens, Richard</au><au>Subramanian, Aneesh C</au><au>Svendsen, Lea</au><au>Theisen, Ole Magnus</au><au>Watret, Connor</au><au>O'Hara, Robert B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the quantification and reporting of model-related uncertainty across different disciplines</atitle><date>2022</date><risdate>2022</risdate><abstract>Quantifying uncertainty associated with our models is the only way we can ex-
press how much we know about any phenomenon. Incomplete consideration of
model-based uncertainties can lead to overstated conclusions with real-world im-
pacts in diverse spheres, including conservation, epidemiology, climate science,
and policy. Despite these potentially damaging consequences, we still know little
about how different fields quantify and report uncertainty. We introduce the
‘‘sources of uncertainty’’ framework, using it to conduct a systematic audit of
model-related uncertainty quantification from seven scientific fields, spanning
the biological, physical, and political sciences. Our interdisciplinary audit shows
no field fully considers all possible sources of uncertainty, but each has its own
best practices alongside shared outstanding challenges. We make ten easy-to-
implement recommendations to improve the consistency, completeness, and
clarity of reporting on model-related uncertainty. These recommendations serve
as a guide to best practices across scientific fields and expand our toolbox for
high-quality research.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3044484 |
source | NORA - Norwegian Open Research Archives |
title | Insights into the quantification and reporting of model-related uncertainty across different disciplines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20quantification%20and%20reporting%20of%20model-related%20uncertainty%20across%20different%20disciplines&rft.au=Simmonds,%20Emily%20Grace&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3044484%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |