Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search

With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mengshoel, Ole Jakob, Flogard, Eirik Lund, Yu, Tong, Riege, Jon
Format: Buch
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Mengshoel, Ole Jakob
Flogard, Eirik Lund
Yu, Tong
Riege, Jon
description With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.
format Book
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3039974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3039974</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30399743</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QBCYhSJnYQEC62idRg3G3dxmYGdieDtTcADWD34vP_midyps1EUqfP0BHUWShYF7qH2SlYEqjeGAdUzQc8RmuEhVqGxwZppPMIV44vfUDr0BCfC8BEvU6FRNg5FvYELGwzjCaNxy2TWYxC7-nGRrOvqVp43JvpRppY4Yptl233a5mleFIdd_o_zBcRDQ0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><source>NORA - Norwegian Open Research Archives</source><creator>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</creator><creatorcontrib>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</creatorcontrib><description>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</description><language>eng</language><publisher>ACM</publisher><ispartof>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference, 2022</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,307,776,881,4034,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3039974$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mengshoel, Ole Jakob</creatorcontrib><creatorcontrib>Flogard, Eirik Lund</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Riege, Jon</creatorcontrib><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><title>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference</title><description>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</description><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid>3HK</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QBCYhSJnYQEC62idRg3G3dxmYGdieDtTcADWD34vP_midyps1EUqfP0BHUWShYF7qH2SlYEqjeGAdUzQc8RmuEhVqGxwZppPMIV44vfUDr0BCfC8BEvU6FRNg5FvYELGwzjCaNxy2TWYxC7-nGRrOvqVp43JvpRppY4Yptl233a5mleFIdd_o_zBcRDQ0Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mengshoel, Ole Jakob</creator><creator>Flogard, Eirik Lund</creator><creator>Yu, Tong</creator><creator>Riege, Jon</creator><general>ACM</general><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><author>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30399743</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mengshoel, Ole Jakob</creatorcontrib><creatorcontrib>Flogard, Eirik Lund</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Riege, Jon</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mengshoel, Ole Jakob</au><au>Flogard, Eirik Lund</au><au>Yu, Tong</au><au>Riege, Jon</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><atitle>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</atitle><btitle>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference</btitle><date>2022</date><risdate>2022</risdate><abstract>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</abstract><pub>ACM</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference, 2022
issn
language eng
recordid cdi_cristin_nora_11250_3039974
source NORA - Norwegian Open Research Archives
title Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.atitle=Understanding%20the%20Cost%20of%20Fitness%20Evaluation%20for%20Subset%20Selection:%20Markov%20Chain%20Analysis%20of%20Stochastic%20Local%20Search&rft.btitle=GECCO%20'22:%20Proceedings%20of%20the%20Genetic%20and%20Evolutionary%20Computation%20Conference&rft.au=Mengshoel,%20Ole%20Jakob&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3039974%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true