Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search
With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's co...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mengshoel, Ole Jakob Flogard, Eirik Lund Yu, Tong Riege, Jon |
description | With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness. |
format | Book |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_3039974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_3039974</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_30399743</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QBCYhSJnYQEC62idRg3G3dxmYGdieDtTcADWD34vP_midyps1EUqfP0BHUWShYF7qH2SlYEqjeGAdUzQc8RmuEhVqGxwZppPMIV44vfUDr0BCfC8BEvU6FRNg5FvYELGwzjCaNxy2TWYxC7-nGRrOvqVp43JvpRppY4Yptl233a5mleFIdd_o_zBcRDQ0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><source>NORA - Norwegian Open Research Archives</source><creator>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</creator><creatorcontrib>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</creatorcontrib><description>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</description><language>eng</language><publisher>ACM</publisher><ispartof>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference, 2022</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,307,776,881,4034,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/3039974$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mengshoel, Ole Jakob</creatorcontrib><creatorcontrib>Flogard, Eirik Lund</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Riege, Jon</creatorcontrib><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><title>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference</title><description>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</description><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid>3HK</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QBCYhSJnYQEC62idRg3G3dxmYGdieDtTcADWD34vP_midyps1EUqfP0BHUWShYF7qH2SlYEqjeGAdUzQc8RmuEhVqGxwZppPMIV44vfUDr0BCfC8BEvU6FRNg5FvYELGwzjCaNxy2TWYxC7-nGRrOvqVp43JvpRppY4Yptl233a5mleFIdd_o_zBcRDQ0Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mengshoel, Ole Jakob</creator><creator>Flogard, Eirik Lund</creator><creator>Yu, Tong</creator><creator>Riege, Jon</creator><general>ACM</general><scope>3HK</scope></search><sort><creationdate>2022</creationdate><title>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</title><author>Mengshoel, Ole Jakob ; Flogard, Eirik Lund ; Yu, Tong ; Riege, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_30399743</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mengshoel, Ole Jakob</creatorcontrib><creatorcontrib>Flogard, Eirik Lund</creatorcontrib><creatorcontrib>Yu, Tong</creatorcontrib><creatorcontrib>Riege, Jon</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mengshoel, Ole Jakob</au><au>Flogard, Eirik Lund</au><au>Yu, Tong</au><au>Riege, Jon</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><atitle>Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search</atitle><btitle>GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference</btitle><date>2022</date><risdate>2022</risdate><abstract>With a focus on both the fitness and cost of subset selection, we study stochastic local search (SLS) heuristics in this paper. In particular, we consider subset selection problems where the cost of fitness function evaluation needs to be accounted for. Here, cost can be fitness evaluation's computation time or energy cost. We propose and study an SLS method, SLS4CFF, tailored to such problems. SLS4CFF ("SLS for costly fitness functions") is an amalgamation of several existing heuristics. We develop a homogeneous Markov chain model that explicitly represents both fitness and cost of subset selection with SLS4CFF. This Markov chain, which can be lumped or compressed for certain fitness and cost functions, enables us to better understand and analyze hyperparameter optimization in a principled manner, via expected hitting times. Studies with synthetic and real-world problems improve the understanding of SLS and demonstrate the importance of cost-awareness.</abstract><pub>ACM</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference, 2022 |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_3039974 |
source | NORA - Norwegian Open Research Archives |
title | Understanding the Cost of Fitness Evaluation for Subset Selection: Markov Chain Analysis of Stochastic Local Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.atitle=Understanding%20the%20Cost%20of%20Fitness%20Evaluation%20for%20Subset%20Selection:%20Markov%20Chain%20Analysis%20of%20Stochastic%20Local%20Search&rft.btitle=GECCO%20'22:%20Proceedings%20of%20the%20Genetic%20and%20Evolutionary%20Computation%20Conference&rft.au=Mengshoel,%20Ole%20Jakob&rft.date=2022&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_3039974%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |