Automated segmentation of endometrial cancer on MR images using deep learning

Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hodneland, Erlend, Dybvik, Julie Andrea, Wagner-Larsen, Kari Strøno, Solteszova, Veronika, Zanna, Antonella, Fasmer, Kristine Eldevik, Krakstad, Camilla, Lundervold, Arvid, Lundervold, Alexander Selvikvåg, Salvesen, Øyvind, Erickson, Bradley J, Haldorsen, Ingfrid S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hodneland, Erlend
Dybvik, Julie Andrea
Wagner-Larsen, Kari Strøno
Solteszova, Veronika
Zanna, Antonella
Fasmer, Kristine Eldevik
Krakstad, Camilla
Lundervold, Arvid
Lundervold, Alexander Selvikvåg
Salvesen, Øyvind
Erickson, Bradley J
Haldorsen, Ingfrid S
description Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2765954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2765954</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_27659543</originalsourceid><addsrcrecordid>eNqNijEKAjEQANNYiPqH9QGCdxrFUkSxuUbsw5LshYVkI8ne_73CB1gNw8zSDNdJS0alAI1iJlFULgJlBJJQMmllTOBRPFWYw_ACzhipwdRYIgSiDyTCKrOtzWLE1Gjz48psH_f37bnzlZuyOCkVXdf1du_688le7PHwz_MFyso1uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated segmentation of endometrial cancer on MR images using deep learning</title><source>NORA - Norwegian Open Research Archives</source><creator>Hodneland, Erlend ; Dybvik, Julie Andrea ; Wagner-Larsen, Kari Strøno ; Solteszova, Veronika ; Zanna, Antonella ; Fasmer, Kristine Eldevik ; Krakstad, Camilla ; Lundervold, Arvid ; Lundervold, Alexander Selvikvåg ; Salvesen, Øyvind ; Erickson, Bradley J ; Haldorsen, Ingfrid S</creator><creatorcontrib>Hodneland, Erlend ; Dybvik, Julie Andrea ; Wagner-Larsen, Kari Strøno ; Solteszova, Veronika ; Zanna, Antonella ; Fasmer, Kristine Eldevik ; Krakstad, Camilla ; Lundervold, Arvid ; Lundervold, Alexander Selvikvåg ; Salvesen, Øyvind ; Erickson, Bradley J ; Haldorsen, Ingfrid S</creatorcontrib><description>Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.</description><language>eng</language><publisher>Nature</publisher><creationdate>2021</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2765954$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hodneland, Erlend</creatorcontrib><creatorcontrib>Dybvik, Julie Andrea</creatorcontrib><creatorcontrib>Wagner-Larsen, Kari Strøno</creatorcontrib><creatorcontrib>Solteszova, Veronika</creatorcontrib><creatorcontrib>Zanna, Antonella</creatorcontrib><creatorcontrib>Fasmer, Kristine Eldevik</creatorcontrib><creatorcontrib>Krakstad, Camilla</creatorcontrib><creatorcontrib>Lundervold, Arvid</creatorcontrib><creatorcontrib>Lundervold, Alexander Selvikvåg</creatorcontrib><creatorcontrib>Salvesen, Øyvind</creatorcontrib><creatorcontrib>Erickson, Bradley J</creatorcontrib><creatorcontrib>Haldorsen, Ingfrid S</creatorcontrib><title>Automated segmentation of endometrial cancer on MR images using deep learning</title><description>Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNijEKAjEQANNYiPqH9QGCdxrFUkSxuUbsw5LshYVkI8ne_73CB1gNw8zSDNdJS0alAI1iJlFULgJlBJJQMmllTOBRPFWYw_ACzhipwdRYIgSiDyTCKrOtzWLE1Gjz48psH_f37bnzlZuyOCkVXdf1du_688le7PHwz_MFyso1uQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hodneland, Erlend</creator><creator>Dybvik, Julie Andrea</creator><creator>Wagner-Larsen, Kari Strøno</creator><creator>Solteszova, Veronika</creator><creator>Zanna, Antonella</creator><creator>Fasmer, Kristine Eldevik</creator><creator>Krakstad, Camilla</creator><creator>Lundervold, Arvid</creator><creator>Lundervold, Alexander Selvikvåg</creator><creator>Salvesen, Øyvind</creator><creator>Erickson, Bradley J</creator><creator>Haldorsen, Ingfrid S</creator><general>Nature</general><scope>3HK</scope></search><sort><creationdate>2021</creationdate><title>Automated segmentation of endometrial cancer on MR images using deep learning</title><author>Hodneland, Erlend ; Dybvik, Julie Andrea ; Wagner-Larsen, Kari Strøno ; Solteszova, Veronika ; Zanna, Antonella ; Fasmer, Kristine Eldevik ; Krakstad, Camilla ; Lundervold, Arvid ; Lundervold, Alexander Selvikvåg ; Salvesen, Øyvind ; Erickson, Bradley J ; Haldorsen, Ingfrid S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_27659543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hodneland, Erlend</creatorcontrib><creatorcontrib>Dybvik, Julie Andrea</creatorcontrib><creatorcontrib>Wagner-Larsen, Kari Strøno</creatorcontrib><creatorcontrib>Solteszova, Veronika</creatorcontrib><creatorcontrib>Zanna, Antonella</creatorcontrib><creatorcontrib>Fasmer, Kristine Eldevik</creatorcontrib><creatorcontrib>Krakstad, Camilla</creatorcontrib><creatorcontrib>Lundervold, Arvid</creatorcontrib><creatorcontrib>Lundervold, Alexander Selvikvåg</creatorcontrib><creatorcontrib>Salvesen, Øyvind</creatorcontrib><creatorcontrib>Erickson, Bradley J</creatorcontrib><creatorcontrib>Haldorsen, Ingfrid S</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hodneland, Erlend</au><au>Dybvik, Julie Andrea</au><au>Wagner-Larsen, Kari Strøno</au><au>Solteszova, Veronika</au><au>Zanna, Antonella</au><au>Fasmer, Kristine Eldevik</au><au>Krakstad, Camilla</au><au>Lundervold, Arvid</au><au>Lundervold, Alexander Selvikvåg</au><au>Salvesen, Øyvind</au><au>Erickson, Bradley J</au><au>Haldorsen, Ingfrid S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated segmentation of endometrial cancer on MR images using deep learning</atitle><date>2021</date><risdate>2021</risdate><abstract>Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, p=0.06). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, p=0.08, p=0.60, and p=0.05). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.</abstract><pub>Nature</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2765954
source NORA - Norwegian Open Research Archives
title Automated segmentation of endometrial cancer on MR images using deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20segmentation%20of%20endometrial%20cancer%20on%20MR%20images%20using%20deep%20learning&rft.au=Hodneland,%20Erlend&rft.date=2021&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2765954%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true