Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study

Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tønnesen, Siren, Kaufmann, Tobias, de Lange, Ann-Marie Glasø, Richard, Geneviève, Nhat Trung, Doan, Alnæs, Dag, van der Meer, Dennis, Rokicki, Jaroslav, Moberget, Torgeir, Maximov, Ivan, Agartz, Ingrid, Aminoff, Sofie Ragnhild, Beck, Dani, Barch, Deanna M, Beresniewicz, Justyna, Cervenka, Simon, Fatouros-Bergman, Helena, Craven, Alexander R, Flyckt, Lena, Gurholt, Tiril Pedersen, Haukvik, Unn Kristin H, Hugdahl, Kenneth, Johnsen, Erik, Jönsson, Erik Gunnar, Schizophrenia Project (KaSP), Karolinska, Kolskår, Knut-Kristian, Kroken, Rune Andreas, Lagerberg, Trine Vik, Løberg, Else-Marie, Nordvik, Jan Egil, Sanders, Anne-Marthe, Ulrichsen, Kristine Moe, Andreassen, Ole Andreas, Westlye, Lars Tjelta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tønnesen, Siren
Kaufmann, Tobias
de Lange, Ann-Marie Glasø
Richard, Geneviève
Nhat Trung, Doan
Alnæs, Dag
van der Meer, Dennis
Rokicki, Jaroslav
Moberget, Torgeir
Maximov, Ivan
Agartz, Ingrid
Aminoff, Sofie Ragnhild
Beck, Dani
Barch, Deanna M
Beresniewicz, Justyna
Cervenka, Simon
Fatouros-Bergman, Helena
Craven, Alexander R
Flyckt, Lena
Gurholt, Tiril Pedersen
Haukvik, Unn Kristin H
Hugdahl, Kenneth
Johnsen, Erik
Jönsson, Erik Gunnar
Schizophrenia Project (KaSP), Karolinska
Kolskår, Knut-Kristian
Kroken, Rune Andreas
Lagerberg, Trine Vik
Løberg, Else-Marie
Nordvik, Jan Egil
Sanders, Anne-Marthe
Ulrichsen, Kristine Moe
Andreassen, Ole Andreas
Westlye, Lars Tjelta
description Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. Methods We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age), 185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = −0.29) and patients with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy–based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2729703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2729703</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_27297033</originalsourceid><addsrcrecordid>eNqNjVEKglAQRf3pI6o9TAsQ1Iiov4qiBfQvo2_UAZ0n88ai9tCes2gBfV0O98CZRq-DIgtgTdArOS6NvYDSjbANgAWpohgUX-vesBF0aEYKI4ey4afvGyVhBBQHBfe-RQXHwasj3cEeuqE1jgN2fUvjUVVD-DSMZHSAO6xZagg2uMc8mlRjlxa_nUXL8-l6vMSlcjCWXLxinqbZOsmzTbbdJKvVP84bpghOMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study</title><source>NORA - Norwegian Open Research Archives</source><creator>Tønnesen, Siren ; Kaufmann, Tobias ; de Lange, Ann-Marie Glasø ; Richard, Geneviève ; Nhat Trung, Doan ; Alnæs, Dag ; van der Meer, Dennis ; Rokicki, Jaroslav ; Moberget, Torgeir ; Maximov, Ivan ; Agartz, Ingrid ; Aminoff, Sofie Ragnhild ; Beck, Dani ; Barch, Deanna M ; Beresniewicz, Justyna ; Cervenka, Simon ; Fatouros-Bergman, Helena ; Craven, Alexander R ; Flyckt, Lena ; Gurholt, Tiril Pedersen ; Haukvik, Unn Kristin H ; Hugdahl, Kenneth ; Johnsen, Erik ; Jönsson, Erik Gunnar ; Schizophrenia Project (KaSP), Karolinska ; Kolskår, Knut-Kristian ; Kroken, Rune Andreas ; Lagerberg, Trine Vik ; Løberg, Else-Marie ; Nordvik, Jan Egil ; Sanders, Anne-Marthe ; Ulrichsen, Kristine Moe ; Andreassen, Ole Andreas ; Westlye, Lars Tjelta</creator><creatorcontrib>Tønnesen, Siren ; Kaufmann, Tobias ; de Lange, Ann-Marie Glasø ; Richard, Geneviève ; Nhat Trung, Doan ; Alnæs, Dag ; van der Meer, Dennis ; Rokicki, Jaroslav ; Moberget, Torgeir ; Maximov, Ivan ; Agartz, Ingrid ; Aminoff, Sofie Ragnhild ; Beck, Dani ; Barch, Deanna M ; Beresniewicz, Justyna ; Cervenka, Simon ; Fatouros-Bergman, Helena ; Craven, Alexander R ; Flyckt, Lena ; Gurholt, Tiril Pedersen ; Haukvik, Unn Kristin H ; Hugdahl, Kenneth ; Johnsen, Erik ; Jönsson, Erik Gunnar ; Schizophrenia Project (KaSP), Karolinska ; Kolskår, Knut-Kristian ; Kroken, Rune Andreas ; Lagerberg, Trine Vik ; Løberg, Else-Marie ; Nordvik, Jan Egil ; Sanders, Anne-Marthe ; Ulrichsen, Kristine Moe ; Andreassen, Ole Andreas ; Westlye, Lars Tjelta</creatorcontrib><description>Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. Methods We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age), 185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = −0.29) and patients with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy–based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.</description><language>eng</language><publisher>Elsevier</publisher><creationdate>2020</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2729703$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tønnesen, Siren</creatorcontrib><creatorcontrib>Kaufmann, Tobias</creatorcontrib><creatorcontrib>de Lange, Ann-Marie Glasø</creatorcontrib><creatorcontrib>Richard, Geneviève</creatorcontrib><creatorcontrib>Nhat Trung, Doan</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>van der Meer, Dennis</creatorcontrib><creatorcontrib>Rokicki, Jaroslav</creatorcontrib><creatorcontrib>Moberget, Torgeir</creatorcontrib><creatorcontrib>Maximov, Ivan</creatorcontrib><creatorcontrib>Agartz, Ingrid</creatorcontrib><creatorcontrib>Aminoff, Sofie Ragnhild</creatorcontrib><creatorcontrib>Beck, Dani</creatorcontrib><creatorcontrib>Barch, Deanna M</creatorcontrib><creatorcontrib>Beresniewicz, Justyna</creatorcontrib><creatorcontrib>Cervenka, Simon</creatorcontrib><creatorcontrib>Fatouros-Bergman, Helena</creatorcontrib><creatorcontrib>Craven, Alexander R</creatorcontrib><creatorcontrib>Flyckt, Lena</creatorcontrib><creatorcontrib>Gurholt, Tiril Pedersen</creatorcontrib><creatorcontrib>Haukvik, Unn Kristin H</creatorcontrib><creatorcontrib>Hugdahl, Kenneth</creatorcontrib><creatorcontrib>Johnsen, Erik</creatorcontrib><creatorcontrib>Jönsson, Erik Gunnar</creatorcontrib><creatorcontrib>Schizophrenia Project (KaSP), Karolinska</creatorcontrib><creatorcontrib>Kolskår, Knut-Kristian</creatorcontrib><creatorcontrib>Kroken, Rune Andreas</creatorcontrib><creatorcontrib>Lagerberg, Trine Vik</creatorcontrib><creatorcontrib>Løberg, Else-Marie</creatorcontrib><creatorcontrib>Nordvik, Jan Egil</creatorcontrib><creatorcontrib>Sanders, Anne-Marthe</creatorcontrib><creatorcontrib>Ulrichsen, Kristine Moe</creatorcontrib><creatorcontrib>Andreassen, Ole Andreas</creatorcontrib><creatorcontrib>Westlye, Lars Tjelta</creatorcontrib><title>Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study</title><description>Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. Methods We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age), 185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = −0.29) and patients with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy–based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjVEKglAQRf3pI6o9TAsQ1Iiov4qiBfQvo2_UAZ0n88ai9tCes2gBfV0O98CZRq-DIgtgTdArOS6NvYDSjbANgAWpohgUX-vesBF0aEYKI4ey4afvGyVhBBQHBfe-RQXHwasj3cEeuqE1jgN2fUvjUVVD-DSMZHSAO6xZagg2uMc8mlRjlxa_nUXL8-l6vMSlcjCWXLxinqbZOsmzTbbdJKvVP84bpghOMw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tønnesen, Siren</creator><creator>Kaufmann, Tobias</creator><creator>de Lange, Ann-Marie Glasø</creator><creator>Richard, Geneviève</creator><creator>Nhat Trung, Doan</creator><creator>Alnæs, Dag</creator><creator>van der Meer, Dennis</creator><creator>Rokicki, Jaroslav</creator><creator>Moberget, Torgeir</creator><creator>Maximov, Ivan</creator><creator>Agartz, Ingrid</creator><creator>Aminoff, Sofie Ragnhild</creator><creator>Beck, Dani</creator><creator>Barch, Deanna M</creator><creator>Beresniewicz, Justyna</creator><creator>Cervenka, Simon</creator><creator>Fatouros-Bergman, Helena</creator><creator>Craven, Alexander R</creator><creator>Flyckt, Lena</creator><creator>Gurholt, Tiril Pedersen</creator><creator>Haukvik, Unn Kristin H</creator><creator>Hugdahl, Kenneth</creator><creator>Johnsen, Erik</creator><creator>Jönsson, Erik Gunnar</creator><creator>Schizophrenia Project (KaSP), Karolinska</creator><creator>Kolskår, Knut-Kristian</creator><creator>Kroken, Rune Andreas</creator><creator>Lagerberg, Trine Vik</creator><creator>Løberg, Else-Marie</creator><creator>Nordvik, Jan Egil</creator><creator>Sanders, Anne-Marthe</creator><creator>Ulrichsen, Kristine Moe</creator><creator>Andreassen, Ole Andreas</creator><creator>Westlye, Lars Tjelta</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2020</creationdate><title>Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study</title><author>Tønnesen, Siren ; Kaufmann, Tobias ; de Lange, Ann-Marie Glasø ; Richard, Geneviève ; Nhat Trung, Doan ; Alnæs, Dag ; van der Meer, Dennis ; Rokicki, Jaroslav ; Moberget, Torgeir ; Maximov, Ivan ; Agartz, Ingrid ; Aminoff, Sofie Ragnhild ; Beck, Dani ; Barch, Deanna M ; Beresniewicz, Justyna ; Cervenka, Simon ; Fatouros-Bergman, Helena ; Craven, Alexander R ; Flyckt, Lena ; Gurholt, Tiril Pedersen ; Haukvik, Unn Kristin H ; Hugdahl, Kenneth ; Johnsen, Erik ; Jönsson, Erik Gunnar ; Schizophrenia Project (KaSP), Karolinska ; Kolskår, Knut-Kristian ; Kroken, Rune Andreas ; Lagerberg, Trine Vik ; Løberg, Else-Marie ; Nordvik, Jan Egil ; Sanders, Anne-Marthe ; Ulrichsen, Kristine Moe ; Andreassen, Ole Andreas ; Westlye, Lars Tjelta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_27297033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tønnesen, Siren</creatorcontrib><creatorcontrib>Kaufmann, Tobias</creatorcontrib><creatorcontrib>de Lange, Ann-Marie Glasø</creatorcontrib><creatorcontrib>Richard, Geneviève</creatorcontrib><creatorcontrib>Nhat Trung, Doan</creatorcontrib><creatorcontrib>Alnæs, Dag</creatorcontrib><creatorcontrib>van der Meer, Dennis</creatorcontrib><creatorcontrib>Rokicki, Jaroslav</creatorcontrib><creatorcontrib>Moberget, Torgeir</creatorcontrib><creatorcontrib>Maximov, Ivan</creatorcontrib><creatorcontrib>Agartz, Ingrid</creatorcontrib><creatorcontrib>Aminoff, Sofie Ragnhild</creatorcontrib><creatorcontrib>Beck, Dani</creatorcontrib><creatorcontrib>Barch, Deanna M</creatorcontrib><creatorcontrib>Beresniewicz, Justyna</creatorcontrib><creatorcontrib>Cervenka, Simon</creatorcontrib><creatorcontrib>Fatouros-Bergman, Helena</creatorcontrib><creatorcontrib>Craven, Alexander R</creatorcontrib><creatorcontrib>Flyckt, Lena</creatorcontrib><creatorcontrib>Gurholt, Tiril Pedersen</creatorcontrib><creatorcontrib>Haukvik, Unn Kristin H</creatorcontrib><creatorcontrib>Hugdahl, Kenneth</creatorcontrib><creatorcontrib>Johnsen, Erik</creatorcontrib><creatorcontrib>Jönsson, Erik Gunnar</creatorcontrib><creatorcontrib>Schizophrenia Project (KaSP), Karolinska</creatorcontrib><creatorcontrib>Kolskår, Knut-Kristian</creatorcontrib><creatorcontrib>Kroken, Rune Andreas</creatorcontrib><creatorcontrib>Lagerberg, Trine Vik</creatorcontrib><creatorcontrib>Løberg, Else-Marie</creatorcontrib><creatorcontrib>Nordvik, Jan Egil</creatorcontrib><creatorcontrib>Sanders, Anne-Marthe</creatorcontrib><creatorcontrib>Ulrichsen, Kristine Moe</creatorcontrib><creatorcontrib>Andreassen, Ole Andreas</creatorcontrib><creatorcontrib>Westlye, Lars Tjelta</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tønnesen, Siren</au><au>Kaufmann, Tobias</au><au>de Lange, Ann-Marie Glasø</au><au>Richard, Geneviève</au><au>Nhat Trung, Doan</au><au>Alnæs, Dag</au><au>van der Meer, Dennis</au><au>Rokicki, Jaroslav</au><au>Moberget, Torgeir</au><au>Maximov, Ivan</au><au>Agartz, Ingrid</au><au>Aminoff, Sofie Ragnhild</au><au>Beck, Dani</au><au>Barch, Deanna M</au><au>Beresniewicz, Justyna</au><au>Cervenka, Simon</au><au>Fatouros-Bergman, Helena</au><au>Craven, Alexander R</au><au>Flyckt, Lena</au><au>Gurholt, Tiril Pedersen</au><au>Haukvik, Unn Kristin H</au><au>Hugdahl, Kenneth</au><au>Johnsen, Erik</au><au>Jönsson, Erik Gunnar</au><au>Schizophrenia Project (KaSP), Karolinska</au><au>Kolskår, Knut-Kristian</au><au>Kroken, Rune Andreas</au><au>Lagerberg, Trine Vik</au><au>Løberg, Else-Marie</au><au>Nordvik, Jan Egil</au><au>Sanders, Anne-Marthe</au><au>Ulrichsen, Kristine Moe</au><au>Andreassen, Ole Andreas</au><au>Westlye, Lars Tjelta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study</atitle><date>2020</date><risdate>2020</risdate><abstract>Background Schizophrenia (SZ) and bipolar disorder (BD) share substantial neurodevelopmental components affecting brain maturation and architecture. This necessitates a dynamic lifespan perspective in which brain aberrations are inferred from deviations from expected lifespan trajectories. We applied machine learning to diffusion tensor imaging (DTI) indices of white matter structure and organization to estimate and compare brain age between patients with SZ, patients with BD, and healthy control (HC) subjects across 10 cohorts. Methods We trained 6 cross-validated models using different combinations of DTI data from 927 HC subjects (18–94 years of age) and applied the models to the test sets including 648 patients with SZ (18–66 years of age), 185 patients with BD (18–64 years of age), and 990 HC subjects (17–68 years of age), estimating the brain age for each participant. Group differences were assessed using linear models, accounting for age, sex, and scanner. A meta-analytic framework was applied to assess the heterogeneity and generalizability of the results. Results Tenfold cross-validation revealed high accuracy for all models. Compared with HC subjects, the model including all feature sets significantly overestimated the age of patients with SZ (Cohen’s d = −0.29) and patients with BD (Cohen’s d = 0.18), with similar effects for the other models. The meta-analysis converged on the same findings. Fractional anisotropy–based models showed larger group differences than the models based on other DTI-derived metrics. Conclusions Brain age prediction based on DTI provides informative and robust proxies for brain white matter integrity. Our results further suggest that white matter aberrations in SZ and BD primarily consist of anatomically distributed deviations from expected lifespan trajectories that generalize across cohorts and scanners.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2729703
source NORA - Norwegian Open Research Archives
title Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: A multi-sample diffusion tensor imaging study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20age%20prediction%20reveals%20aberrant%20brain%20white%20matter%20in%20schizophrenia%20and%20bipolar%20disorder:%20A%20multi-sample%20diffusion%20tensor%20imaging%20study&rft.au=T%C3%B8nnesen,%20Siren&rft.date=2020&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2729703%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true