Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning

Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schwarzmann, Susanna, Marquezan, Clarissa, Bosk, Marcin, Liu, Huiran, Trivisonno, Riccardo, Zinner, Thomas Erich
Format: Buch
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Schwarzmann, Susanna
Marquezan, Clarissa
Bosk, Marcin
Liu, Huiran
Trivisonno, Riccardo
Zinner, Thomas Erich
description Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for Quality of Experience (QoE) estimation can be designed and introduced in next generation networks. It is, however, unclear how 5G networks can collect monitoring data and application metrics, how they correlate to each other, and which techniques can be used in 5G systems for QoE estimation. This paper studies the feasibility of Machine Learning (ML) techniques for QoE estimation and evaluates their performance for a mobile video streaming use-case. A simulator has been implemented with OMNeT++ for generating traces to (i) examine the relevance of features generated from 5G monitoring data and (ii) to study the QoE estimation accuracy (iii) for a variable number of used features.
format Book
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2647858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2647858</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_26478583</originalsourceid><addsrcrecordid>eNrjZPBxLS7JzE0sycxLVwjLTEnNVwguKUpNzAXxA_NdFTLzFEoyUhVM3RUci5IzMktSk0tKi1IVQotBCnwTgUJ5qQo-qYlFeUABHgbWtMSc4lReKM3NoOjmGuLsoZtclAm0Ji8-L78oMd7Q0MjUIN7IzMTcwtTCmBg1APjENEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning</title><source>NORA - Norwegian Open Research Archives</source><creator>Schwarzmann, Susanna ; Marquezan, Clarissa ; Bosk, Marcin ; Liu, Huiran ; Trivisonno, Riccardo ; Zinner, Thomas Erich</creator><creatorcontrib>Schwarzmann, Susanna ; Marquezan, Clarissa ; Bosk, Marcin ; Liu, Huiran ; Trivisonno, Riccardo ; Zinner, Thomas Erich</creatorcontrib><description>Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for Quality of Experience (QoE) estimation can be designed and introduced in next generation networks. It is, however, unclear how 5G networks can collect monitoring data and application metrics, how they correlate to each other, and which techniques can be used in 5G systems for QoE estimation. This paper studies the feasibility of Machine Learning (ML) techniques for QoE estimation and evaluates their performance for a mobile video streaming use-case. A simulator has been implemented with OMNeT++ for generating traces to (i) examine the relevance of features generated from 5G monitoring data and (ii) to study the QoE estimation accuracy (iii) for a variable number of used features.</description><language>eng</language><publisher>Association for Computing Machinery (ACM)</publisher><ispartof>Proceedings of the 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks, 2019</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,307,776,881,4034,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2647858$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Schwarzmann, Susanna</creatorcontrib><creatorcontrib>Marquezan, Clarissa</creatorcontrib><creatorcontrib>Bosk, Marcin</creatorcontrib><creatorcontrib>Liu, Huiran</creatorcontrib><creatorcontrib>Trivisonno, Riccardo</creatorcontrib><creatorcontrib>Zinner, Thomas Erich</creatorcontrib><title>Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning</title><title>Proceedings of the 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks</title><description>Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for Quality of Experience (QoE) estimation can be designed and introduced in next generation networks. It is, however, unclear how 5G networks can collect monitoring data and application metrics, how they correlate to each other, and which techniques can be used in 5G systems for QoE estimation. This paper studies the feasibility of Machine Learning (ML) techniques for QoE estimation and evaluates their performance for a mobile video streaming use-case. A simulator has been implemented with OMNeT++ for generating traces to (i) examine the relevance of features generated from 5G monitoring data and (ii) to study the QoE estimation accuracy (iii) for a variable number of used features.</description><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2019</creationdate><recordtype>book</recordtype><sourceid>3HK</sourceid><recordid>eNrjZPBxLS7JzE0sycxLVwjLTEnNVwguKUpNzAXxA_NdFTLzFEoyUhVM3RUci5IzMktSk0tKi1IVQotBCnwTgUJ5qQo-qYlFeUABHgbWtMSc4lReKM3NoOjmGuLsoZtclAm0Ji8-L78oMd7Q0MjUIN7IzMTcwtTCmBg1APjENEw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Schwarzmann, Susanna</creator><creator>Marquezan, Clarissa</creator><creator>Bosk, Marcin</creator><creator>Liu, Huiran</creator><creator>Trivisonno, Riccardo</creator><creator>Zinner, Thomas Erich</creator><general>Association for Computing Machinery (ACM)</general><scope>3HK</scope></search><sort><creationdate>2019</creationdate><title>Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning</title><author>Schwarzmann, Susanna ; Marquezan, Clarissa ; Bosk, Marcin ; Liu, Huiran ; Trivisonno, Riccardo ; Zinner, Thomas Erich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_26478583</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Schwarzmann, Susanna</creatorcontrib><creatorcontrib>Marquezan, Clarissa</creatorcontrib><creatorcontrib>Bosk, Marcin</creatorcontrib><creatorcontrib>Liu, Huiran</creatorcontrib><creatorcontrib>Trivisonno, Riccardo</creatorcontrib><creatorcontrib>Zinner, Thomas Erich</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schwarzmann, Susanna</au><au>Marquezan, Clarissa</au><au>Bosk, Marcin</au><au>Liu, Huiran</au><au>Trivisonno, Riccardo</au><au>Zinner, Thomas Erich</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><atitle>Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning</atitle><btitle>Proceedings of the 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks</btitle><date>2019</date><risdate>2019</risdate><abstract>Compared to earlier mobile network generations, the 5G system architecture has been significantly enhanced by the introduction of network analytics functionalities and ex- tended capabilities of interacting with third party Application Functions (AFs). Combining these capabilities, new features for Quality of Experience (QoE) estimation can be designed and introduced in next generation networks. It is, however, unclear how 5G networks can collect monitoring data and application metrics, how they correlate to each other, and which techniques can be used in 5G systems for QoE estimation. This paper studies the feasibility of Machine Learning (ML) techniques for QoE estimation and evaluates their performance for a mobile video streaming use-case. A simulator has been implemented with OMNeT++ for generating traces to (i) examine the relevance of features generated from 5G monitoring data and (ii) to study the QoE estimation accuracy (iii) for a variable number of used features.</abstract><pub>Association for Computing Machinery (ACM)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof Proceedings of the 4th Internet-QoE Workshop on QoE-based Analysis and Management of Data Communication Networks, 2019
issn
language eng
recordid cdi_cristin_nora_11250_2647858
source NORA - Norwegian Open Research Archives
title Estimating Video Streaming QoE in the 5G Architecture Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.atitle=Estimating%20Video%20Streaming%20QoE%20in%20the%205G%20Architecture%20Using%20Machine%20Learning&rft.btitle=Proceedings%20of%20the%204th%20Internet-QoE%20Workshop%20on%20QoE-based%20Analysis%20and%20Management%20of%20Data%20Communication%20Networks&rft.au=Schwarzmann,%20Susanna&rft.date=2019&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2647858%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true