A computationally efficient model predictive control scheme for space debris rendezvous

We propose a non-linear model predictive scheme for planning fuel efficient maneuvers of small spacecrafts that shall rendezvous space debris. The paper addresses the specific issues of potential limited on-board computational capabilities and low-thrust actuators in the chasing spacecraft, and solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Larsén, Alexander, Chen, Yutao, Bruschetta, Mattia, Carli, Ruggero, Cenedese, Angelo, Varagnolo, Damiano, Felicetti, Leonard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Larsén, Alexander
Chen, Yutao
Bruschetta, Mattia
Carli, Ruggero
Cenedese, Angelo
Varagnolo, Damiano
Felicetti, Leonard
description We propose a non-linear model predictive scheme for planning fuel efficient maneuvers of small spacecrafts that shall rendezvous space debris. The paper addresses the specific issues of potential limited on-board computational capabilities and low-thrust actuators in the chasing spacecraft, and solves them by using a novel MatLab-based toolbox for real-time non-linear model predictive control (MPC) called MATMPC. This tool computes the MPC rendezvous maneuvering solution in a numerically efficient way, and this allows to greatly extend the prediction horizon length. This implies that the overall MPC scheme can compute solutions that account for the long time-scales that usually characterize the low-thrust rendezvous maneuvers. The so-developed controller is then tested in a realistic scenario that includes all the near-Earth environmental disturbances. We thus show, through numerical simulations, that this MPC method can successfully be used to perform a fuel-efficient rendezvous maneuver with an uncontrolled object, plus evaluate performance indexes such as mission duration, fuel consumption, and robustness against sensor and process noises
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2645085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2645085</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_26450853</originalsourceid><addsrcrecordid>eNqNykEKwjAQAMBePIj6h_UBQluNeBVRfIDgMcRkQxeSbEi2BX29PfgAT3OZZfM8g-WYRzFCnEwIb0DvyRImgcgOA-SCjqzQhHNNUjhAtQNGBM8FajYWweGrUIWCyeFn4rGum4U3oeLm56rZ3q6Py31n5yeUdOJidNf1qtX98aDak9r_c76xnjpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A computationally efficient model predictive control scheme for space debris rendezvous</title><source>NORA - Norwegian Open Research Archives</source><creator>Larsén, Alexander ; Chen, Yutao ; Bruschetta, Mattia ; Carli, Ruggero ; Cenedese, Angelo ; Varagnolo, Damiano ; Felicetti, Leonard</creator><creatorcontrib>Larsén, Alexander ; Chen, Yutao ; Bruschetta, Mattia ; Carli, Ruggero ; Cenedese, Angelo ; Varagnolo, Damiano ; Felicetti, Leonard</creatorcontrib><description>We propose a non-linear model predictive scheme for planning fuel efficient maneuvers of small spacecrafts that shall rendezvous space debris. The paper addresses the specific issues of potential limited on-board computational capabilities and low-thrust actuators in the chasing spacecraft, and solves them by using a novel MatLab-based toolbox for real-time non-linear model predictive control (MPC) called MATMPC. This tool computes the MPC rendezvous maneuvering solution in a numerically efficient way, and this allows to greatly extend the prediction horizon length. This implies that the overall MPC scheme can compute solutions that account for the long time-scales that usually characterize the low-thrust rendezvous maneuvers. The so-developed controller is then tested in a realistic scenario that includes all the near-Earth environmental disturbances. We thus show, through numerical simulations, that this MPC method can successfully be used to perform a fuel-efficient rendezvous maneuver with an uncontrolled object, plus evaluate performance indexes such as mission duration, fuel consumption, and robustness against sensor and process noises</description><language>eng</language><publisher>Elsevier</publisher><creationdate>2019</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,781,886,26572</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2645085$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Larsén, Alexander</creatorcontrib><creatorcontrib>Chen, Yutao</creatorcontrib><creatorcontrib>Bruschetta, Mattia</creatorcontrib><creatorcontrib>Carli, Ruggero</creatorcontrib><creatorcontrib>Cenedese, Angelo</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><creatorcontrib>Felicetti, Leonard</creatorcontrib><title>A computationally efficient model predictive control scheme for space debris rendezvous</title><description>We propose a non-linear model predictive scheme for planning fuel efficient maneuvers of small spacecrafts that shall rendezvous space debris. The paper addresses the specific issues of potential limited on-board computational capabilities and low-thrust actuators in the chasing spacecraft, and solves them by using a novel MatLab-based toolbox for real-time non-linear model predictive control (MPC) called MATMPC. This tool computes the MPC rendezvous maneuvering solution in a numerically efficient way, and this allows to greatly extend the prediction horizon length. This implies that the overall MPC scheme can compute solutions that account for the long time-scales that usually characterize the low-thrust rendezvous maneuvers. The so-developed controller is then tested in a realistic scenario that includes all the near-Earth environmental disturbances. We thus show, through numerical simulations, that this MPC method can successfully be used to perform a fuel-efficient rendezvous maneuver with an uncontrolled object, plus evaluate performance indexes such as mission duration, fuel consumption, and robustness against sensor and process noises</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNykEKwjAQAMBePIj6h_UBQluNeBVRfIDgMcRkQxeSbEi2BX29PfgAT3OZZfM8g-WYRzFCnEwIb0DvyRImgcgOA-SCjqzQhHNNUjhAtQNGBM8FajYWweGrUIWCyeFn4rGum4U3oeLm56rZ3q6Py31n5yeUdOJidNf1qtX98aDak9r_c76xnjpQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Larsén, Alexander</creator><creator>Chen, Yutao</creator><creator>Bruschetta, Mattia</creator><creator>Carli, Ruggero</creator><creator>Cenedese, Angelo</creator><creator>Varagnolo, Damiano</creator><creator>Felicetti, Leonard</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2019</creationdate><title>A computationally efficient model predictive control scheme for space debris rendezvous</title><author>Larsén, Alexander ; Chen, Yutao ; Bruschetta, Mattia ; Carli, Ruggero ; Cenedese, Angelo ; Varagnolo, Damiano ; Felicetti, Leonard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_26450853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Larsén, Alexander</creatorcontrib><creatorcontrib>Chen, Yutao</creatorcontrib><creatorcontrib>Bruschetta, Mattia</creatorcontrib><creatorcontrib>Carli, Ruggero</creatorcontrib><creatorcontrib>Cenedese, Angelo</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><creatorcontrib>Felicetti, Leonard</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Larsén, Alexander</au><au>Chen, Yutao</au><au>Bruschetta, Mattia</au><au>Carli, Ruggero</au><au>Cenedese, Angelo</au><au>Varagnolo, Damiano</au><au>Felicetti, Leonard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computationally efficient model predictive control scheme for space debris rendezvous</atitle><date>2019</date><risdate>2019</risdate><abstract>We propose a non-linear model predictive scheme for planning fuel efficient maneuvers of small spacecrafts that shall rendezvous space debris. The paper addresses the specific issues of potential limited on-board computational capabilities and low-thrust actuators in the chasing spacecraft, and solves them by using a novel MatLab-based toolbox for real-time non-linear model predictive control (MPC) called MATMPC. This tool computes the MPC rendezvous maneuvering solution in a numerically efficient way, and this allows to greatly extend the prediction horizon length. This implies that the overall MPC scheme can compute solutions that account for the long time-scales that usually characterize the low-thrust rendezvous maneuvers. The so-developed controller is then tested in a realistic scenario that includes all the near-Earth environmental disturbances. We thus show, through numerical simulations, that this MPC method can successfully be used to perform a fuel-efficient rendezvous maneuver with an uncontrolled object, plus evaluate performance indexes such as mission duration, fuel consumption, and robustness against sensor and process noises</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2645085
source NORA - Norwegian Open Research Archives
title A computationally efficient model predictive control scheme for space debris rendezvous
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computationally%20efficient%20model%20predictive%20control%20scheme%20for%20space%20debris%20rendezvous&rft.au=Lars%C3%A9n,%20Alexander&rft.date=2019&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2645085%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true