Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models
Speed-volume-density relationship and capacity are key elements in modelling traffic operations, designing roadways, and evaluating facility performance. This paper uses a modified five-parameter logistic model to describe the speed-density relationship. The calibrated speed-density models show that...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Lu, Chaoru Dong, Jing Sharma, Anuj Huang, Tingting Knickerbocker, Skylar |
description | Speed-volume-density relationship and capacity are key elements in modelling traffic operations, designing roadways, and evaluating facility performance. This paper uses a modified five-parameter logistic model to describe the speed-density relationship. The calibrated speed-density models show that the stop-and-go speed () and shape parameters ( and ) are similar for work zones and the nonwork zone site. Accordingly, an operational capacity prediction method is proposed. To demonstrate the effectiveness of the proposed method, the predicted operational capacities are compared with the field data, Highway Capacity Manual method, the output of WorkZoneQ software, and the ensemble tree approach under different work zone scenarios. Furthermore, a lifetime distribution prediction framework for stochastic capacity of work zones is proposed. The predicted lifetime distribution can well capture the tendency of the observed work zone capacities. |
format | Article |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2612311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2612311</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_26123113</originalsourceid><addsrcrecordid>eNrjZIgMKEpNyUwuycxLV3ArSk0tT6xUCM8vylaIys9LVXBOLEhMziypVHDJLC4pykwqLcnMz1NwSixOTVEAMnzy04HimckKwQWpqSm6Lql5xSDFvvkpqTnFPAysaYk5xam8UJqbQdHNNcTZQze5CKQpLz4vvygx3tDQyNQg3sjM0MjY0NCYGDUAlc05sQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models</title><source>NORA - Norwegian Open Research Archives</source><creator>Lu, Chaoru ; Dong, Jing ; Sharma, Anuj ; Huang, Tingting ; Knickerbocker, Skylar</creator><creatorcontrib>Lu, Chaoru ; Dong, Jing ; Sharma, Anuj ; Huang, Tingting ; Knickerbocker, Skylar</creatorcontrib><description>Speed-volume-density relationship and capacity are key elements in modelling traffic operations, designing roadways, and evaluating facility performance. This paper uses a modified five-parameter logistic model to describe the speed-density relationship. The calibrated speed-density models show that the stop-and-go speed () and shape parameters ( and ) are similar for work zones and the nonwork zone site. Accordingly, an operational capacity prediction method is proposed. To demonstrate the effectiveness of the proposed method, the predicted operational capacities are compared with the field data, Highway Capacity Manual method, the output of WorkZoneQ software, and the ensemble tree approach under different work zone scenarios. Furthermore, a lifetime distribution prediction framework for stochastic capacity of work zones is proposed. The predicted lifetime distribution can well capture the tendency of the observed work zone capacities.</description><language>eng</language><publisher>Hindawi Publishing Corporation</publisher><creationdate>2018</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2612311$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lu, Chaoru</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Sharma, Anuj</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Knickerbocker, Skylar</creatorcontrib><title>Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models</title><description>Speed-volume-density relationship and capacity are key elements in modelling traffic operations, designing roadways, and evaluating facility performance. This paper uses a modified five-parameter logistic model to describe the speed-density relationship. The calibrated speed-density models show that the stop-and-go speed () and shape parameters ( and ) are similar for work zones and the nonwork zone site. Accordingly, an operational capacity prediction method is proposed. To demonstrate the effectiveness of the proposed method, the predicted operational capacities are compared with the field data, Highway Capacity Manual method, the output of WorkZoneQ software, and the ensemble tree approach under different work zone scenarios. Furthermore, a lifetime distribution prediction framework for stochastic capacity of work zones is proposed. The predicted lifetime distribution can well capture the tendency of the observed work zone capacities.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNrjZIgMKEpNyUwuycxLV3ArSk0tT6xUCM8vylaIys9LVXBOLEhMziypVHDJLC4pykwqLcnMz1NwSixOTVEAMnzy04HimckKwQWpqSm6Lql5xSDFvvkpqTnFPAysaYk5xam8UJqbQdHNNcTZQze5CKQpLz4vvygx3tDQyNQg3sjM0MjY0NCYGDUAlc05sQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Lu, Chaoru</creator><creator>Dong, Jing</creator><creator>Sharma, Anuj</creator><creator>Huang, Tingting</creator><creator>Knickerbocker, Skylar</creator><general>Hindawi Publishing Corporation</general><scope>3HK</scope></search><sort><creationdate>2018</creationdate><title>Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models</title><author>Lu, Chaoru ; Dong, Jing ; Sharma, Anuj ; Huang, Tingting ; Knickerbocker, Skylar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_26123113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chaoru</creatorcontrib><creatorcontrib>Dong, Jing</creatorcontrib><creatorcontrib>Sharma, Anuj</creatorcontrib><creatorcontrib>Huang, Tingting</creatorcontrib><creatorcontrib>Knickerbocker, Skylar</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Chaoru</au><au>Dong, Jing</au><au>Sharma, Anuj</au><au>Huang, Tingting</au><au>Knickerbocker, Skylar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models</atitle><date>2018</date><risdate>2018</risdate><abstract>Speed-volume-density relationship and capacity are key elements in modelling traffic operations, designing roadways, and evaluating facility performance. This paper uses a modified five-parameter logistic model to describe the speed-density relationship. The calibrated speed-density models show that the stop-and-go speed () and shape parameters ( and ) are similar for work zones and the nonwork zone site. Accordingly, an operational capacity prediction method is proposed. To demonstrate the effectiveness of the proposed method, the predicted operational capacities are compared with the field data, Highway Capacity Manual method, the output of WorkZoneQ software, and the ensemble tree approach under different work zone scenarios. Furthermore, a lifetime distribution prediction framework for stochastic capacity of work zones is proposed. The predicted lifetime distribution can well capture the tendency of the observed work zone capacities.</abstract><pub>Hindawi Publishing Corporation</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_11250_2612311 |
source | NORA - Norwegian Open Research Archives |
title | Predicting Freeway Work Zone Capacity Distribution Based on Logistic Speed-Density Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Freeway%20Work%20Zone%20Capacity%20Distribution%20Based%20on%20Logistic%20Speed-Density%20Models&rft.au=Lu,%20Chaoru&rft.date=2018&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2612311%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |