Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)

Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bräuer-Krisch, Elke, Adam, Jean-Francois, Alagoz, Enver, Bartzsch, Stefan, Crosbie, Jeff, DeWagter, Carlos, Dipuglia, Andrew, Donzelli, Mattia, Doran, Simon, Fournier, Pauline, Kalef-Ezra, John, Kok, Angela, Lerch, Michael L.F, McErlean, Ciara, Oelfke, Uwe, Olko, Pawel, Petasecca, Marco, Povoli, Marco, Rosenfeld, Anatoly B, Siegbahn, Erik A, Sporea, Dan, Stugu, Bjarne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bräuer-Krisch, Elke
Adam, Jean-Francois
Alagoz, Enver
Bartzsch, Stefan
Crosbie, Jeff
DeWagter, Carlos
Dipuglia, Andrew
Donzelli, Mattia
Doran, Simon
Fournier, Pauline
Kalef-Ezra, John
Kok, Angela
Lerch, Michael L.F
McErlean, Ciara
Oelfke, Uwe
Olko, Pawel
Petasecca, Marco
Povoli, Marco
Rosenfeld, Anatoly B
Siegbahn, Erik A
Sporea, Dan
Stugu, Bjarne
description Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.
format Article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2385911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2385911</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_23859113</originalsourceid><addsrcrecordid>eNqNjDEKwlAQRNNYiHqHtdNCMAkBtRXFJo1JH9afDVmI_4fdbXINT2wQEcTGagbmvZlGj5xqdthB3w7KTgG1J2cKoQFrCXTwrpVgEjwI1ozGYxsXwZ5JD5Czk3AjvP_MA6zya7kG9PXXjRoJBUNn7F5S-PBFMQrzaNJgp7R45yxank_l8bJxwmrsKx8EqzhOsm2VpLtsH8fpP8wTUApPlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)</title><source>NORA - Norwegian Open Research Archives</source><creator>Bräuer-Krisch, Elke ; Adam, Jean-Francois ; Alagoz, Enver ; Bartzsch, Stefan ; Crosbie, Jeff ; DeWagter, Carlos ; Dipuglia, Andrew ; Donzelli, Mattia ; Doran, Simon ; Fournier, Pauline ; Kalef-Ezra, John ; Kok, Angela ; Lerch, Michael L.F ; McErlean, Ciara ; Oelfke, Uwe ; Olko, Pawel ; Petasecca, Marco ; Povoli, Marco ; Rosenfeld, Anatoly B ; Siegbahn, Erik A ; Sporea, Dan ; Stugu, Bjarne</creator><creatorcontrib>Bräuer-Krisch, Elke ; Adam, Jean-Francois ; Alagoz, Enver ; Bartzsch, Stefan ; Crosbie, Jeff ; DeWagter, Carlos ; Dipuglia, Andrew ; Donzelli, Mattia ; Doran, Simon ; Fournier, Pauline ; Kalef-Ezra, John ; Kok, Angela ; Lerch, Michael L.F ; McErlean, Ciara ; Oelfke, Uwe ; Olko, Pawel ; Petasecca, Marco ; Povoli, Marco ; Rosenfeld, Anatoly B ; Siegbahn, Erik A ; Sporea, Dan ; Stugu, Bjarne</creatorcontrib><description>Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.</description><language>eng</language><creationdate>2015</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2385911$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bräuer-Krisch, Elke</creatorcontrib><creatorcontrib>Adam, Jean-Francois</creatorcontrib><creatorcontrib>Alagoz, Enver</creatorcontrib><creatorcontrib>Bartzsch, Stefan</creatorcontrib><creatorcontrib>Crosbie, Jeff</creatorcontrib><creatorcontrib>DeWagter, Carlos</creatorcontrib><creatorcontrib>Dipuglia, Andrew</creatorcontrib><creatorcontrib>Donzelli, Mattia</creatorcontrib><creatorcontrib>Doran, Simon</creatorcontrib><creatorcontrib>Fournier, Pauline</creatorcontrib><creatorcontrib>Kalef-Ezra, John</creatorcontrib><creatorcontrib>Kok, Angela</creatorcontrib><creatorcontrib>Lerch, Michael L.F</creatorcontrib><creatorcontrib>McErlean, Ciara</creatorcontrib><creatorcontrib>Oelfke, Uwe</creatorcontrib><creatorcontrib>Olko, Pawel</creatorcontrib><creatorcontrib>Petasecca, Marco</creatorcontrib><creatorcontrib>Povoli, Marco</creatorcontrib><creatorcontrib>Rosenfeld, Anatoly B</creatorcontrib><creatorcontrib>Siegbahn, Erik A</creatorcontrib><creatorcontrib>Sporea, Dan</creatorcontrib><creatorcontrib>Stugu, Bjarne</creatorcontrib><title>Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)</title><description>Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjDEKwlAQRNNYiHqHtdNCMAkBtRXFJo1JH9afDVmI_4fdbXINT2wQEcTGagbmvZlGj5xqdthB3w7KTgG1J2cKoQFrCXTwrpVgEjwI1ozGYxsXwZ5JD5Czk3AjvP_MA6zya7kG9PXXjRoJBUNn7F5S-PBFMQrzaNJgp7R45yxank_l8bJxwmrsKx8EqzhOsm2VpLtsH8fpP8wTUApPlw</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Bräuer-Krisch, Elke</creator><creator>Adam, Jean-Francois</creator><creator>Alagoz, Enver</creator><creator>Bartzsch, Stefan</creator><creator>Crosbie, Jeff</creator><creator>DeWagter, Carlos</creator><creator>Dipuglia, Andrew</creator><creator>Donzelli, Mattia</creator><creator>Doran, Simon</creator><creator>Fournier, Pauline</creator><creator>Kalef-Ezra, John</creator><creator>Kok, Angela</creator><creator>Lerch, Michael L.F</creator><creator>McErlean, Ciara</creator><creator>Oelfke, Uwe</creator><creator>Olko, Pawel</creator><creator>Petasecca, Marco</creator><creator>Povoli, Marco</creator><creator>Rosenfeld, Anatoly B</creator><creator>Siegbahn, Erik A</creator><creator>Sporea, Dan</creator><creator>Stugu, Bjarne</creator><scope>3HK</scope></search><sort><creationdate>2015</creationdate><title>Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)</title><author>Bräuer-Krisch, Elke ; Adam, Jean-Francois ; Alagoz, Enver ; Bartzsch, Stefan ; Crosbie, Jeff ; DeWagter, Carlos ; Dipuglia, Andrew ; Donzelli, Mattia ; Doran, Simon ; Fournier, Pauline ; Kalef-Ezra, John ; Kok, Angela ; Lerch, Michael L.F ; McErlean, Ciara ; Oelfke, Uwe ; Olko, Pawel ; Petasecca, Marco ; Povoli, Marco ; Rosenfeld, Anatoly B ; Siegbahn, Erik A ; Sporea, Dan ; Stugu, Bjarne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_23859113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bräuer-Krisch, Elke</creatorcontrib><creatorcontrib>Adam, Jean-Francois</creatorcontrib><creatorcontrib>Alagoz, Enver</creatorcontrib><creatorcontrib>Bartzsch, Stefan</creatorcontrib><creatorcontrib>Crosbie, Jeff</creatorcontrib><creatorcontrib>DeWagter, Carlos</creatorcontrib><creatorcontrib>Dipuglia, Andrew</creatorcontrib><creatorcontrib>Donzelli, Mattia</creatorcontrib><creatorcontrib>Doran, Simon</creatorcontrib><creatorcontrib>Fournier, Pauline</creatorcontrib><creatorcontrib>Kalef-Ezra, John</creatorcontrib><creatorcontrib>Kok, Angela</creatorcontrib><creatorcontrib>Lerch, Michael L.F</creatorcontrib><creatorcontrib>McErlean, Ciara</creatorcontrib><creatorcontrib>Oelfke, Uwe</creatorcontrib><creatorcontrib>Olko, Pawel</creatorcontrib><creatorcontrib>Petasecca, Marco</creatorcontrib><creatorcontrib>Povoli, Marco</creatorcontrib><creatorcontrib>Rosenfeld, Anatoly B</creatorcontrib><creatorcontrib>Siegbahn, Erik A</creatorcontrib><creatorcontrib>Sporea, Dan</creatorcontrib><creatorcontrib>Stugu, Bjarne</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bräuer-Krisch, Elke</au><au>Adam, Jean-Francois</au><au>Alagoz, Enver</au><au>Bartzsch, Stefan</au><au>Crosbie, Jeff</au><au>DeWagter, Carlos</au><au>Dipuglia, Andrew</au><au>Donzelli, Mattia</au><au>Doran, Simon</au><au>Fournier, Pauline</au><au>Kalef-Ezra, John</au><au>Kok, Angela</au><au>Lerch, Michael L.F</au><au>McErlean, Ciara</au><au>Oelfke, Uwe</au><au>Olko, Pawel</au><au>Petasecca, Marco</au><au>Povoli, Marco</au><au>Rosenfeld, Anatoly B</au><au>Siegbahn, Erik A</au><au>Sporea, Dan</au><au>Stugu, Bjarne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)</atitle><date>2015</date><risdate>2015</risdate><abstract>Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25–75 micron-wide microplanar beams separated by wider (100–400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2385911
source NORA - Norwegian Open Research Archives
title Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20physics%20aspects%20of%20the%20synchrotron%20radiation%20therapies:%20Microbeam%20radiation%20therapy%20(MRT)%20and%20synchrotron%20stereotactic%20radiotherapy%20(SSRT)&rft.au=Br%C3%A4uer-Krisch,%20Elke&rft.date=2015&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2385911%3C/cristin_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true