Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin
Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms an...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-11, Vol.15 (11), p.18541-18556 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18556 |
---|---|
container_issue | 11 |
container_start_page | 18541 |
container_title | ACS nano |
container_volume | 15 |
creator | Siemer, Svenja Bauer, Tobias A Scholz, Paul Breder, Christina Fenaroli, Federico Harms, Gregory Dietrich, Dimo Dietrich, Jörn Rosenauer, Christine Barz, Matthias Becker, Sven Strieth, Sebastian Reinhardt, Christoph Fauth, Torsten Hagemann, Jan Stauber, Roland H |
description | Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from
to analytical and
to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP
, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged
circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP
significantly (
< 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway
the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations. |
doi_str_mv | 10.1021/acsnano.1c08632 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_93614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34739225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZgf-gbSxp4mbJQoUkMpDqEjsIseetEaNE9kpUv4eV32s5o7mzujOIeSWxWMWczaRyltpmzFT8SwFfkaGLIM0Cs3P-UknbECuvP-N40TMRHpJBjAVkHGeDMlqKd0KO2NXNJdWoaP5GuumW6OTbU-_0Bvf7Qa07OmnQ2W8aSx9Q22UsRg9OvOHlr6HEK10nVEbjOaNq7cb2aGmufFtUMZek4tKbjzeHOqIfM-flvlLtPh4fs0fFpGClHcRaiHDIwy5zIRimYCq4qoSWGGqNYcERSxFWTLFISiotJZZAsgBOKQshRG5399VLgQ3trCNkwULEHgRaLBpcEyOjsZ7h1XROlNL1wdXsYNaHKAWB6hh426_0W7LGvXJf6QI_5FCdY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>ACS Publications</source><creator>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</creator><creatorcontrib>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</creatorcontrib><description>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from
to analytical and
to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP
, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged
circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP
significantly (
< 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway
the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c08632</identifier><identifier>PMID: 34739225</identifier><language>eng</language><publisher>United States</publisher><subject>Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cisplatin - pharmacology ; Drug Resistance, Neoplasm ; Humans ; Membrane Proteins - metabolism ; Nanoparticles ; Neoplasms - drug therapy ; Precision Medicine ; Prospective Studies</subject><ispartof>ACS nano, 2021-11, Vol.15 (11), p.18541-18556</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</citedby><cites>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</cites><orcidid>0000-0003-2089-8949 ; 0000-0002-9060-8786 ; 0000-0002-1341-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,26567,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Bauer, Tobias A</creatorcontrib><creatorcontrib>Scholz, Paul</creatorcontrib><creatorcontrib>Breder, Christina</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Harms, Gregory</creatorcontrib><creatorcontrib>Dietrich, Dimo</creatorcontrib><creatorcontrib>Dietrich, Jörn</creatorcontrib><creatorcontrib>Rosenauer, Christine</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><creatorcontrib>Reinhardt, Christoph</creatorcontrib><creatorcontrib>Fauth, Torsten</creatorcontrib><creatorcontrib>Hagemann, Jan</creatorcontrib><creatorcontrib>Stauber, Roland H</creatorcontrib><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from
to analytical and
to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP
, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged
circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP
significantly (
< 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway
the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cisplatin - pharmacology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Nanoparticles</subject><subject>Neoplasms - drug therapy</subject><subject>Precision Medicine</subject><subject>Prospective Studies</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNo9kMtOwzAQRS0EoqWwZgf-gbSxp4mbJQoUkMpDqEjsIseetEaNE9kpUv4eV32s5o7mzujOIeSWxWMWczaRyltpmzFT8SwFfkaGLIM0Cs3P-UknbECuvP-N40TMRHpJBjAVkHGeDMlqKd0KO2NXNJdWoaP5GuumW6OTbU-_0Bvf7Qa07OmnQ2W8aSx9Q22UsRg9OvOHlr6HEK10nVEbjOaNq7cb2aGmufFtUMZek4tKbjzeHOqIfM-flvlLtPh4fs0fFpGClHcRaiHDIwy5zIRimYCq4qoSWGGqNYcERSxFWTLFISiotJZZAsgBOKQshRG5399VLgQ3trCNkwULEHgRaLBpcEyOjsZ7h1XROlNL1wdXsYNaHKAWB6hh426_0W7LGvXJf6QI_5FCdY4</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Siemer, Svenja</creator><creator>Bauer, Tobias A</creator><creator>Scholz, Paul</creator><creator>Breder, Christina</creator><creator>Fenaroli, Federico</creator><creator>Harms, Gregory</creator><creator>Dietrich, Dimo</creator><creator>Dietrich, Jörn</creator><creator>Rosenauer, Christine</creator><creator>Barz, Matthias</creator><creator>Becker, Sven</creator><creator>Strieth, Sebastian</creator><creator>Reinhardt, Christoph</creator><creator>Fauth, Torsten</creator><creator>Hagemann, Jan</creator><creator>Stauber, Roland H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-2089-8949</orcidid><orcidid>https://orcid.org/0000-0002-9060-8786</orcidid><orcidid>https://orcid.org/0000-0002-1341-4523</orcidid></search><sort><creationdate>20211123</creationdate><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><author>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cisplatin - pharmacology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Nanoparticles</topic><topic>Neoplasms - drug therapy</topic><topic>Precision Medicine</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Bauer, Tobias A</creatorcontrib><creatorcontrib>Scholz, Paul</creatorcontrib><creatorcontrib>Breder, Christina</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Harms, Gregory</creatorcontrib><creatorcontrib>Dietrich, Dimo</creatorcontrib><creatorcontrib>Dietrich, Jörn</creatorcontrib><creatorcontrib>Rosenauer, Christine</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><creatorcontrib>Reinhardt, Christoph</creatorcontrib><creatorcontrib>Fauth, Torsten</creatorcontrib><creatorcontrib>Hagemann, Jan</creatorcontrib><creatorcontrib>Stauber, Roland H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siemer, Svenja</au><au>Bauer, Tobias A</au><au>Scholz, Paul</au><au>Breder, Christina</au><au>Fenaroli, Federico</au><au>Harms, Gregory</au><au>Dietrich, Dimo</au><au>Dietrich, Jörn</au><au>Rosenauer, Christine</au><au>Barz, Matthias</au><au>Becker, Sven</au><au>Strieth, Sebastian</au><au>Reinhardt, Christoph</au><au>Fauth, Torsten</au><au>Hagemann, Jan</au><au>Stauber, Roland H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>18541</spage><epage>18556</epage><pages>18541-18556</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from
to analytical and
to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP
, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged
circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP
significantly (
< 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway
the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</abstract><cop>United States</cop><pmid>34739225</pmid><doi>10.1021/acsnano.1c08632</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2089-8949</orcidid><orcidid>https://orcid.org/0000-0002-9060-8786</orcidid><orcidid>https://orcid.org/0000-0002-1341-4523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-11, Vol.15 (11), p.18541-18556 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_cristin_nora_10852_93614 |
source | MEDLINE; NORA - Norwegian Open Research Archives; ACS Publications |
subjects | Antineoplastic Agents - pharmacology Cell Line, Tumor Cisplatin - pharmacology Drug Resistance, Neoplasm Humans Membrane Proteins - metabolism Nanoparticles Neoplasms - drug therapy Precision Medicine Prospective Studies |
title | Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20Cancer%20Chemotherapy%20Resistance%20by%20Precision%20Medicine-Driven%20Nanoparticle-Formulated%20Cisplatin&rft.jtitle=ACS%20nano&rft.au=Siemer,%20Svenja&rft.date=2021-11-23&rft.volume=15&rft.issue=11&rft.spage=18541&rft.epage=18556&rft.pages=18541-18556&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c08632&rft_dat=%3Cpubmed_crist%3E34739225%3C/pubmed_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34739225&rfr_iscdi=true |