Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin

Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.18541-18556
Hauptverfasser: Siemer, Svenja, Bauer, Tobias A, Scholz, Paul, Breder, Christina, Fenaroli, Federico, Harms, Gregory, Dietrich, Dimo, Dietrich, Jörn, Rosenauer, Christine, Barz, Matthias, Becker, Sven, Strieth, Sebastian, Reinhardt, Christoph, Fauth, Torsten, Hagemann, Jan, Stauber, Roland H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18556
container_issue 11
container_start_page 18541
container_title ACS nano
container_volume 15
creator Siemer, Svenja
Bauer, Tobias A
Scholz, Paul
Breder, Christina
Fenaroli, Federico
Harms, Gregory
Dietrich, Dimo
Dietrich, Jörn
Rosenauer, Christine
Barz, Matthias
Becker, Sven
Strieth, Sebastian
Reinhardt, Christoph
Fauth, Torsten
Hagemann, Jan
Stauber, Roland H
description Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from to analytical and to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP , Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP significantly ( < 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.
doi_str_mv 10.1021/acsnano.1c08632
format Article
fullrecord <record><control><sourceid>pubmed_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_93614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34739225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZgf-gbSxp4mbJQoUkMpDqEjsIseetEaNE9kpUv4eV32s5o7mzujOIeSWxWMWczaRyltpmzFT8SwFfkaGLIM0Cs3P-UknbECuvP-N40TMRHpJBjAVkHGeDMlqKd0KO2NXNJdWoaP5GuumW6OTbU-_0Bvf7Qa07OmnQ2W8aSx9Q22UsRg9OvOHlr6HEK10nVEbjOaNq7cb2aGmufFtUMZek4tKbjzeHOqIfM-flvlLtPh4fs0fFpGClHcRaiHDIwy5zIRimYCq4qoSWGGqNYcERSxFWTLFISiotJZZAsgBOKQshRG5399VLgQ3trCNkwULEHgRaLBpcEyOjsZ7h1XROlNL1wdXsYNaHKAWB6hh426_0W7LGvXJf6QI_5FCdY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>ACS Publications</source><creator>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</creator><creatorcontrib>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</creatorcontrib><description>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from to analytical and to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP , Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP significantly ( &lt; 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c08632</identifier><identifier>PMID: 34739225</identifier><language>eng</language><publisher>United States</publisher><subject>Antineoplastic Agents - pharmacology ; Cell Line, Tumor ; Cisplatin - pharmacology ; Drug Resistance, Neoplasm ; Humans ; Membrane Proteins - metabolism ; Nanoparticles ; Neoplasms - drug therapy ; Precision Medicine ; Prospective Studies</subject><ispartof>ACS nano, 2021-11, Vol.15 (11), p.18541-18556</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</citedby><cites>FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</cites><orcidid>0000-0003-2089-8949 ; 0000-0002-9060-8786 ; 0000-0002-1341-4523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,26567,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34739225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Bauer, Tobias A</creatorcontrib><creatorcontrib>Scholz, Paul</creatorcontrib><creatorcontrib>Breder, Christina</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Harms, Gregory</creatorcontrib><creatorcontrib>Dietrich, Dimo</creatorcontrib><creatorcontrib>Dietrich, Jörn</creatorcontrib><creatorcontrib>Rosenauer, Christine</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><creatorcontrib>Reinhardt, Christoph</creatorcontrib><creatorcontrib>Fauth, Torsten</creatorcontrib><creatorcontrib>Hagemann, Jan</creatorcontrib><creatorcontrib>Stauber, Roland H</creatorcontrib><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from to analytical and to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP , Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP significantly ( &lt; 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</description><subject>Antineoplastic Agents - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cisplatin - pharmacology</subject><subject>Drug Resistance, Neoplasm</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Nanoparticles</subject><subject>Neoplasms - drug therapy</subject><subject>Precision Medicine</subject><subject>Prospective Studies</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNo9kMtOwzAQRS0EoqWwZgf-gbSxp4mbJQoUkMpDqEjsIseetEaNE9kpUv4eV32s5o7mzujOIeSWxWMWczaRyltpmzFT8SwFfkaGLIM0Cs3P-UknbECuvP-N40TMRHpJBjAVkHGeDMlqKd0KO2NXNJdWoaP5GuumW6OTbU-_0Bvf7Qa07OmnQ2W8aSx9Q22UsRg9OvOHlr6HEK10nVEbjOaNq7cb2aGmufFtUMZek4tKbjzeHOqIfM-flvlLtPh4fs0fFpGClHcRaiHDIwy5zIRimYCq4qoSWGGqNYcERSxFWTLFISiotJZZAsgBOKQshRG5399VLgQ3trCNkwULEHgRaLBpcEyOjsZ7h1XROlNL1wdXsYNaHKAWB6hh426_0W7LGvXJf6QI_5FCdY4</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Siemer, Svenja</creator><creator>Bauer, Tobias A</creator><creator>Scholz, Paul</creator><creator>Breder, Christina</creator><creator>Fenaroli, Federico</creator><creator>Harms, Gregory</creator><creator>Dietrich, Dimo</creator><creator>Dietrich, Jörn</creator><creator>Rosenauer, Christine</creator><creator>Barz, Matthias</creator><creator>Becker, Sven</creator><creator>Strieth, Sebastian</creator><creator>Reinhardt, Christoph</creator><creator>Fauth, Torsten</creator><creator>Hagemann, Jan</creator><creator>Stauber, Roland H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-2089-8949</orcidid><orcidid>https://orcid.org/0000-0002-9060-8786</orcidid><orcidid>https://orcid.org/0000-0002-1341-4523</orcidid></search><sort><creationdate>20211123</creationdate><title>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</title><author>Siemer, Svenja ; Bauer, Tobias A ; Scholz, Paul ; Breder, Christina ; Fenaroli, Federico ; Harms, Gregory ; Dietrich, Dimo ; Dietrich, Jörn ; Rosenauer, Christine ; Barz, Matthias ; Becker, Sven ; Strieth, Sebastian ; Reinhardt, Christoph ; Fauth, Torsten ; Hagemann, Jan ; Stauber, Roland H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ed7a8631e2a97c1973ff2cf7efe6dd235e70a7bb1c2370a3fdda953e233236163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antineoplastic Agents - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cisplatin - pharmacology</topic><topic>Drug Resistance, Neoplasm</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Nanoparticles</topic><topic>Neoplasms - drug therapy</topic><topic>Precision Medicine</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siemer, Svenja</creatorcontrib><creatorcontrib>Bauer, Tobias A</creatorcontrib><creatorcontrib>Scholz, Paul</creatorcontrib><creatorcontrib>Breder, Christina</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Harms, Gregory</creatorcontrib><creatorcontrib>Dietrich, Dimo</creatorcontrib><creatorcontrib>Dietrich, Jörn</creatorcontrib><creatorcontrib>Rosenauer, Christine</creatorcontrib><creatorcontrib>Barz, Matthias</creatorcontrib><creatorcontrib>Becker, Sven</creatorcontrib><creatorcontrib>Strieth, Sebastian</creatorcontrib><creatorcontrib>Reinhardt, Christoph</creatorcontrib><creatorcontrib>Fauth, Torsten</creatorcontrib><creatorcontrib>Hagemann, Jan</creatorcontrib><creatorcontrib>Stauber, Roland H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siemer, Svenja</au><au>Bauer, Tobias A</au><au>Scholz, Paul</au><au>Breder, Christina</au><au>Fenaroli, Federico</au><au>Harms, Gregory</au><au>Dietrich, Dimo</au><au>Dietrich, Jörn</au><au>Rosenauer, Christine</au><au>Barz, Matthias</au><au>Becker, Sven</au><au>Strieth, Sebastian</au><au>Reinhardt, Christoph</au><au>Fauth, Torsten</au><au>Hagemann, Jan</au><au>Stauber, Roland H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>15</volume><issue>11</issue><spage>18541</spage><epage>18556</epage><pages>18541-18556</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from to analytical and to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NP , Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NP significantly ( &lt; 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.</abstract><cop>United States</cop><pmid>34739225</pmid><doi>10.1021/acsnano.1c08632</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2089-8949</orcidid><orcidid>https://orcid.org/0000-0002-9060-8786</orcidid><orcidid>https://orcid.org/0000-0002-1341-4523</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-11, Vol.15 (11), p.18541-18556
issn 1936-0851
1936-086X
language eng
recordid cdi_cristin_nora_10852_93614
source MEDLINE; NORA - Norwegian Open Research Archives; ACS Publications
subjects Antineoplastic Agents - pharmacology
Cell Line, Tumor
Cisplatin - pharmacology
Drug Resistance, Neoplasm
Humans
Membrane Proteins - metabolism
Nanoparticles
Neoplasms - drug therapy
Precision Medicine
Prospective Studies
title Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20Cancer%20Chemotherapy%20Resistance%20by%20Precision%20Medicine-Driven%20Nanoparticle-Formulated%20Cisplatin&rft.jtitle=ACS%20nano&rft.au=Siemer,%20Svenja&rft.date=2021-11-23&rft.volume=15&rft.issue=11&rft.spage=18541&rft.epage=18556&rft.pages=18541-18556&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c08632&rft_dat=%3Cpubmed_crist%3E34739225%3C/pubmed_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34739225&rfr_iscdi=true