Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots

Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-06, Vol.55 (12), p.7776-7785
Hauptverfasser: Pan, Da, Benedict, Katherine B, Golston, Levi M, Wang, Rui, Collett, Jeffrey L, Tao, Lei, Sun, Kang, Guo, Xuehui, Ham, Jay, Prenni, Anthony J, Schichtel, Bret A, Mikoviny, Tomas, Müller, Markus, Wisthaler, Armin, Zondlo, Mark A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7785
container_issue 12
container_start_page 7776
container_title Environmental science & technology
container_volume 55
creator Pan, Da
Benedict, Katherine B
Golston, Levi M
Wang, Rui
Collett, Jeffrey L
Tao, Lei
Sun, Kang
Guo, Xuehui
Ham, Jay
Prenni, Anthony J
Schichtel, Bret A
Mikoviny, Tomas
Müller, Markus
Wisthaler, Armin
Zondlo, Mark A
description Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m–2 s–1) versus only the urban area (1.0 ng m–2 s–1) and both urban and agricultural areas (2.7 ng m–2 s–1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.
doi_str_mv 10.1021/acs.est.0c05749
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_93242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543836796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-a306503103540c2495c98ecb25da960dc15f2f1ef9508e3f6c089b04ca11b7a73</originalsourceid><addsrcrecordid>eNp1kMFLwzAYR4MoOKdnjwY8SrcvSdM2x7JNJwy8bOAtZFkqGW1Tk_Sw_96WTW-ecvje-xEeQo8EZgQomSsdZibEGWjgeSqu0IRwCgkvOLlGEwDCEsGyz1t0F8IRACiDYoJ2ZdO41iq89Ce8NJ0LNlrXYtti1eKy7mxr8Eq7cArRNHjrlTYHHB0uv7zVfR17r2q8amwIo7Z2sXMx3KObStXBPFzeKdq9rraLdbL5eHtflJtEpcBiohhkHBgBxlPQNBVci8LoPeUHJTI4aMIrWhFTCQ6FYVWmoRB7SLUiZJ-rnE3R03lXexuibWXrvJIECk6lYDSlA_F8Jjrvvvuhjzy63rfDpyTlKStYlotsoOa_Oy4EbyrZedsofxq25FhXDnXlaF_qDsbL2RgPf5P_0T-m6ntG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543836796</pqid></control><display><type>article</type><title>Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots</title><source>NORA - Norwegian Open Research Archives</source><source>American Chemical Society Journals</source><creator>Pan, Da ; Benedict, Katherine B ; Golston, Levi M ; Wang, Rui ; Collett, Jeffrey L ; Tao, Lei ; Sun, Kang ; Guo, Xuehui ; Ham, Jay ; Prenni, Anthony J ; Schichtel, Bret A ; Mikoviny, Tomas ; Müller, Markus ; Wisthaler, Armin ; Zondlo, Mark A</creator><creatorcontrib>Pan, Da ; Benedict, Katherine B ; Golston, Levi M ; Wang, Rui ; Collett, Jeffrey L ; Tao, Lei ; Sun, Kang ; Guo, Xuehui ; Ham, Jay ; Prenni, Anthony J ; Schichtel, Bret A ; Mikoviny, Tomas ; Müller, Markus ; Wisthaler, Armin ; Zondlo, Mark A</creatorcontrib><description>Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m–2 s–1) versus only the urban area (1.0 ng m–2 s–1) and both urban and agricultural areas (2.7 ng m–2 s–1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c05749</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Agricultural ecosystems ; Air masses ; Ammonia ; Anthropogenic Impacts on the Atmosphere ; Deposition ; Dry deposition ; Ecosystems ; Emission ; Emissions ; Fluxes ; Mountains ; National parks ; Temporal resolution ; Urban agriculture ; Urban areas</subject><ispartof>Environmental science &amp; technology, 2021-06, Vol.55 (12), p.7776-7785</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 15, 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-a306503103540c2495c98ecb25da960dc15f2f1ef9508e3f6c089b04ca11b7a73</citedby><cites>FETCH-LOGICAL-a403t-a306503103540c2495c98ecb25da960dc15f2f1ef9508e3f6c089b04ca11b7a73</cites><orcidid>0000-0003-2302-9554 ; 0000-0001-5050-3018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c05749$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c05749$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,26567,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Pan, Da</creatorcontrib><creatorcontrib>Benedict, Katherine B</creatorcontrib><creatorcontrib>Golston, Levi M</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Collett, Jeffrey L</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Guo, Xuehui</creatorcontrib><creatorcontrib>Ham, Jay</creatorcontrib><creatorcontrib>Prenni, Anthony J</creatorcontrib><creatorcontrib>Schichtel, Bret A</creatorcontrib><creatorcontrib>Mikoviny, Tomas</creatorcontrib><creatorcontrib>Müller, Markus</creatorcontrib><creatorcontrib>Wisthaler, Armin</creatorcontrib><creatorcontrib>Zondlo, Mark A</creatorcontrib><title>Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m–2 s–1) versus only the urban area (1.0 ng m–2 s–1) and both urban and agricultural areas (2.7 ng m–2 s–1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.</description><subject>Agricultural ecosystems</subject><subject>Air masses</subject><subject>Ammonia</subject><subject>Anthropogenic Impacts on the Atmosphere</subject><subject>Deposition</subject><subject>Dry deposition</subject><subject>Ecosystems</subject><subject>Emission</subject><subject>Emissions</subject><subject>Fluxes</subject><subject>Mountains</subject><subject>National parks</subject><subject>Temporal resolution</subject><subject>Urban agriculture</subject><subject>Urban areas</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp1kMFLwzAYR4MoOKdnjwY8SrcvSdM2x7JNJwy8bOAtZFkqGW1Tk_Sw_96WTW-ecvje-xEeQo8EZgQomSsdZibEGWjgeSqu0IRwCgkvOLlGEwDCEsGyz1t0F8IRACiDYoJ2ZdO41iq89Ce8NJ0LNlrXYtti1eKy7mxr8Eq7cArRNHjrlTYHHB0uv7zVfR17r2q8amwIo7Z2sXMx3KObStXBPFzeKdq9rraLdbL5eHtflJtEpcBiohhkHBgBxlPQNBVci8LoPeUHJTI4aMIrWhFTCQ6FYVWmoRB7SLUiZJ-rnE3R03lXexuibWXrvJIECk6lYDSlA_F8Jjrvvvuhjzy63rfDpyTlKStYlotsoOa_Oy4EbyrZedsofxq25FhXDnXlaF_qDsbL2RgPf5P_0T-m6ntG</recordid><startdate>20210615</startdate><enddate>20210615</enddate><creator>Pan, Da</creator><creator>Benedict, Katherine B</creator><creator>Golston, Levi M</creator><creator>Wang, Rui</creator><creator>Collett, Jeffrey L</creator><creator>Tao, Lei</creator><creator>Sun, Kang</creator><creator>Guo, Xuehui</creator><creator>Ham, Jay</creator><creator>Prenni, Anthony J</creator><creator>Schichtel, Bret A</creator><creator>Mikoviny, Tomas</creator><creator>Müller, Markus</creator><creator>Wisthaler, Armin</creator><creator>Zondlo, Mark A</creator><general>American Chemical Society</general><general>ACS Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-2302-9554</orcidid><orcidid>https://orcid.org/0000-0001-5050-3018</orcidid></search><sort><creationdate>20210615</creationdate><title>Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots</title><author>Pan, Da ; Benedict, Katherine B ; Golston, Levi M ; Wang, Rui ; Collett, Jeffrey L ; Tao, Lei ; Sun, Kang ; Guo, Xuehui ; Ham, Jay ; Prenni, Anthony J ; Schichtel, Bret A ; Mikoviny, Tomas ; Müller, Markus ; Wisthaler, Armin ; Zondlo, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-a306503103540c2495c98ecb25da960dc15f2f1ef9508e3f6c089b04ca11b7a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural ecosystems</topic><topic>Air masses</topic><topic>Ammonia</topic><topic>Anthropogenic Impacts on the Atmosphere</topic><topic>Deposition</topic><topic>Dry deposition</topic><topic>Ecosystems</topic><topic>Emission</topic><topic>Emissions</topic><topic>Fluxes</topic><topic>Mountains</topic><topic>National parks</topic><topic>Temporal resolution</topic><topic>Urban agriculture</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Da</creatorcontrib><creatorcontrib>Benedict, Katherine B</creatorcontrib><creatorcontrib>Golston, Levi M</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Collett, Jeffrey L</creatorcontrib><creatorcontrib>Tao, Lei</creatorcontrib><creatorcontrib>Sun, Kang</creatorcontrib><creatorcontrib>Guo, Xuehui</creatorcontrib><creatorcontrib>Ham, Jay</creatorcontrib><creatorcontrib>Prenni, Anthony J</creatorcontrib><creatorcontrib>Schichtel, Bret A</creatorcontrib><creatorcontrib>Mikoviny, Tomas</creatorcontrib><creatorcontrib>Müller, Markus</creatorcontrib><creatorcontrib>Wisthaler, Armin</creatorcontrib><creatorcontrib>Zondlo, Mark A</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Da</au><au>Benedict, Katherine B</au><au>Golston, Levi M</au><au>Wang, Rui</au><au>Collett, Jeffrey L</au><au>Tao, Lei</au><au>Sun, Kang</au><au>Guo, Xuehui</au><au>Ham, Jay</au><au>Prenni, Anthony J</au><au>Schichtel, Bret A</au><au>Mikoviny, Tomas</au><au>Müller, Markus</au><au>Wisthaler, Armin</au><au>Zondlo, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-06-15</date><risdate>2021</risdate><volume>55</volume><issue>12</issue><spage>7776</spage><epage>7785</epage><pages>7776-7785</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m–2 s–1) versus only the urban area (1.0 ng m–2 s–1) and both urban and agricultural areas (2.7 ng m–2 s–1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in these regions.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.0c05749</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2302-9554</orcidid><orcidid>https://orcid.org/0000-0001-5050-3018</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-06, Vol.55 (12), p.7776-7785
issn 0013-936X
1520-5851
language eng
recordid cdi_cristin_nora_10852_93242
source NORA - Norwegian Open Research Archives; American Chemical Society Journals
subjects Agricultural ecosystems
Air masses
Ammonia
Anthropogenic Impacts on the Atmosphere
Deposition
Dry deposition
Ecosystems
Emission
Emissions
Fluxes
Mountains
National parks
Temporal resolution
Urban agriculture
Urban areas
title Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20Dry%20Deposition%20in%20an%20Alpine%20Ecosystem%20Traced%20to%20Agricultural%20Emission%20Hotpots&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Pan,%20Da&rft.date=2021-06-15&rft.volume=55&rft.issue=12&rft.spage=7776&rft.epage=7785&rft.pages=7776-7785&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c05749&rft_dat=%3Cproquest_crist%3E2543836796%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543836796&rft_id=info:pmid/&rfr_iscdi=true