Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions

We present a computational survey of the reduction of CO2 to CO by alkali metal and alkaline earth metal chloride anions in the gas phase, uncovering also mechanistic aspects on the selective tuning between oxalate and carbonate products relevant to chemical or electrochemical processes. The reducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organometallics 2021-06, Vol.40 (11), p.1735-1743
Hauptverfasser: Jestilä, Joakim S, Uggerud, Einar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1743
container_issue 11
container_start_page 1735
container_title Organometallics
container_volume 40
creator Jestilä, Joakim S
Uggerud, Einar
description We present a computational survey of the reduction of CO2 to CO by alkali metal and alkaline earth metal chloride anions in the gas phase, uncovering also mechanistic aspects on the selective tuning between oxalate and carbonate products relevant to chemical or electrochemical processes. The reduction of a single CO2 molecule is typically endothermic, whereas the corresponding disproportionation reaction involving two molecules is exothermic. Our computational results suggest consistent periodic trends with reaction energies being highest for elements toward the center of each group. The factors governing these trends are discussed, in particular, the covalent contributions to bonding in these highly ionic species.
doi_str_mv 10.1021/acs.organomet.1c00213
format Article
fullrecord <record><control><sourceid>acs_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_92551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b204590350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a198t-eabc245282c149af0e0e4b3d09f0b26e851b50b09d37fe89ed373962bac89d0a3</originalsourceid><addsrcrecordid>eNo9kNtKAzEURYMoWKufIOYHpp4kc8tjGesFKgXR5yGXM3bqNCkzKeibn25qR582WdnskEXINYMZA85ulRlmvn9Xzm8xzJiBCMUJmbCMQ5JDyk7JBHiRJ4UQ4pxcDMMGAPJC8An5rvx2tw8qtN6pji4-d53vf0_UNzSskd61PZpAX9DuzR-vVpwGH4M-o21VQEv1F513H6prIwpxSTk7Aod0ofqwHi-qdXyhtUjnLq4Nl-SsUd2AV2NOydv94rV6TJarh6dqvkwUk2VIUGnD04yX3LBUqgYQMNXCgmxA8xzLjOkMNEgrigZLiTGFzLlWppQWlJiSm-Ou6dshtK528Z81gzLjteRZxmKDHRvRZ73x-z4KGWKjPkiuD_Bfcj1KFj9aN3Nm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions</title><source>NORA - Norwegian Open Research Archives</source><source>ACS Publications</source><creator>Jestilä, Joakim S ; Uggerud, Einar</creator><creatorcontrib>Jestilä, Joakim S ; Uggerud, Einar</creatorcontrib><description>We present a computational survey of the reduction of CO2 to CO by alkali metal and alkaline earth metal chloride anions in the gas phase, uncovering also mechanistic aspects on the selective tuning between oxalate and carbonate products relevant to chemical or electrochemical processes. The reduction of a single CO2 molecule is typically endothermic, whereas the corresponding disproportionation reaction involving two molecules is exothermic. Our computational results suggest consistent periodic trends with reaction energies being highest for elements toward the center of each group. The factors governing these trends are discussed, in particular, the covalent contributions to bonding in these highly ionic species.</description><identifier>ISSN: 0276-7333</identifier><identifier>EISSN: 1520-6041</identifier><identifier>DOI: 10.1021/acs.organomet.1c00213</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Organometallics, 2021-06, Vol.40 (11), p.1735-1743</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7233-2093 ; 0000-0003-2732-2336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.organomet.1c00213$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.organomet.1c00213$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,26546,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Jestilä, Joakim S</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><title>Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions</title><title>Organometallics</title><addtitle>Organometallics</addtitle><description>We present a computational survey of the reduction of CO2 to CO by alkali metal and alkaline earth metal chloride anions in the gas phase, uncovering also mechanistic aspects on the selective tuning between oxalate and carbonate products relevant to chemical or electrochemical processes. The reduction of a single CO2 molecule is typically endothermic, whereas the corresponding disproportionation reaction involving two molecules is exothermic. Our computational results suggest consistent periodic trends with reaction energies being highest for elements toward the center of each group. The factors governing these trends are discussed, in particular, the covalent contributions to bonding in these highly ionic species.</description><issn>0276-7333</issn><issn>1520-6041</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kNtKAzEURYMoWKufIOYHpp4kc8tjGesFKgXR5yGXM3bqNCkzKeibn25qR582WdnskEXINYMZA85ulRlmvn9Xzm8xzJiBCMUJmbCMQ5JDyk7JBHiRJ4UQ4pxcDMMGAPJC8An5rvx2tw8qtN6pji4-d53vf0_UNzSskd61PZpAX9DuzR-vVpwGH4M-o21VQEv1F513H6prIwpxSTk7Aod0ofqwHi-qdXyhtUjnLq4Nl-SsUd2AV2NOydv94rV6TJarh6dqvkwUk2VIUGnD04yX3LBUqgYQMNXCgmxA8xzLjOkMNEgrigZLiTGFzLlWppQWlJiSm-Ou6dshtK528Z81gzLjteRZxmKDHRvRZ73x-z4KGWKjPkiuD_Bfcj1KFj9aN3Nm</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Jestilä, Joakim S</creator><creator>Uggerud, Einar</creator><general>American Chemical Society</general><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-7233-2093</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid></search><sort><creationdate>20210614</creationdate><title>Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions</title><author>Jestilä, Joakim S ; Uggerud, Einar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a198t-eabc245282c149af0e0e4b3d09f0b26e851b50b09d37fe89ed373962bac89d0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jestilä, Joakim S</creatorcontrib><creatorcontrib>Uggerud, Einar</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Organometallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jestilä, Joakim S</au><au>Uggerud, Einar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions</atitle><jtitle>Organometallics</jtitle><addtitle>Organometallics</addtitle><date>2021-06-14</date><risdate>2021</risdate><volume>40</volume><issue>11</issue><spage>1735</spage><epage>1743</epage><pages>1735-1743</pages><issn>0276-7333</issn><eissn>1520-6041</eissn><abstract>We present a computational survey of the reduction of CO2 to CO by alkali metal and alkaline earth metal chloride anions in the gas phase, uncovering also mechanistic aspects on the selective tuning between oxalate and carbonate products relevant to chemical or electrochemical processes. The reduction of a single CO2 molecule is typically endothermic, whereas the corresponding disproportionation reaction involving two molecules is exothermic. Our computational results suggest consistent periodic trends with reaction energies being highest for elements toward the center of each group. The factors governing these trends are discussed, in particular, the covalent contributions to bonding in these highly ionic species.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.organomet.1c00213</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7233-2093</orcidid><orcidid>https://orcid.org/0000-0003-2732-2336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0276-7333
ispartof Organometallics, 2021-06, Vol.40 (11), p.1735-1743
issn 0276-7333
1520-6041
language eng
recordid cdi_cristin_nora_10852_92551
source NORA - Norwegian Open Research Archives; ACS Publications
title Computational Exploration of the Direct Reduction of CO2 to CO Mediated by Alkali Metal and Alkaline Earth Metal Chloride Anions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Exploration%20of%20the%20Direct%20Reduction%20of%20CO2%20to%20CO%20Mediated%20by%20Alkali%20Metal%20and%20Alkaline%20Earth%20Metal%20Chloride%20Anions&rft.jtitle=Organometallics&rft.au=Jestila%CC%88,%20Joakim%20S&rft.date=2021-06-14&rft.volume=40&rft.issue=11&rft.spage=1735&rft.epage=1743&rft.pages=1735-1743&rft.issn=0276-7333&rft.eissn=1520-6041&rft_id=info:doi/10.1021/acs.organomet.1c00213&rft_dat=%3Cacs_crist%3Eb204590350%3C/acs_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true