Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake

•Novel numerical method for nonlinear embedded 1D-3D mixed-dimensional PDEs.•Simulations of root water uptake demonstrate accuracy and efficiency of the approach.•Accurate reconstruction of interface unknown and flux on coarse grids.•Detailed numerical investigation of underlying model assumptions.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2022-02, Vol.450, p.110823, Article 110823
Hauptverfasser: Koch, Timo, Wu, Hanchuan, Schneider, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110823
container_title Journal of computational physics
container_volume 450
creator Koch, Timo
Wu, Hanchuan
Schneider, Martin
description •Novel numerical method for nonlinear embedded 1D-3D mixed-dimensional PDEs.•Simulations of root water uptake demonstrate accuracy and efficiency of the approach.•Accurate reconstruction of interface unknown and flux on coarse grids.•Detailed numerical investigation of underlying model assumptions.•Method is independent of discretization scheme and type of computational grid. We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications such as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyze a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.
doi_str_mv 10.1016/j.jcp.2021.110823
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_91710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199912100718X</els_id><sourcerecordid>2638077951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-24234443de042d4d833de731eaa094915bb11798732e45e3eb06ec17cafe167c3</originalsourceid><addsrcrecordid>eNp9kMGOFCEQhonRxHH1ATxJ4rlHCuimiSezcdVkoxc9ExpqIr3d0ALt6NvLZPTqiUr4_j9VHyEvgR2BwfBmPs5uO3LG4QjARi4ekQMwzTquYHhMDqz9dFpreEqelTIzxsZejgfiPqe4hIg20zX8Qt_5sGIsIUW6Jo8LPaVMcZ3Qe_S07tO-NDRiPaf8UOg51O_UbtsSnK2XUE00p1Tp2VbMdN-qfcDn5MnJLgVf_H1vyLe7919vP3b3Xz58un133zmhee245EJKKTwyyb30o2ijEoDWMi019NMEoPSoBEfZo8CJDehAOXtCGJQTN-TVtdflUGqIJqZsTbPRc6NBAWvE6yux5fRjx1LNnPYc21KGD2JkSukeGgX_elIpGU9my2G1-XfrMhfbZjbNtrnYNlfbLfP2msF24M-A2RQXMDr0IaOrxqfwn_QfBT6GvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638077951</pqid></control><display><type>article</type><title>Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Koch, Timo ; Wu, Hanchuan ; Schneider, Martin</creator><creatorcontrib>Koch, Timo ; Wu, Hanchuan ; Schneider, Martin</creatorcontrib><description>•Novel numerical method for nonlinear embedded 1D-3D mixed-dimensional PDEs.•Simulations of root water uptake demonstrate accuracy and efficiency of the approach.•Accurate reconstruction of interface unknown and flux on coarse grids.•Detailed numerical investigation of underlying model assumptions.•Method is independent of discretization scheme and type of computational grid. We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications such as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyze a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110823</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>1d-3d Coupling ; Computational physics ; Domains ; Embedded networks ; Exact solutions ; Finite element method ; Grid refinement (mathematics) ; Heat exchangers ; Mathematical models ; Mixed-dimension method ; Nonlinear elliptic equations ; Nonlinearity ; Pressure dependence ; Robustness (mathematics) ; Root water uptake ; Smoothing kernel ; Temperature dependence ; Thermal conductivity ; Transpiration</subject><ispartof>Journal of computational physics, 2022-02, Vol.450, p.110823, Article 110823</ispartof><rights>2021 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Feb 1, 2022</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-24234443de042d4d833de731eaa094915bb11798732e45e3eb06ec17cafe167c3</citedby><cites>FETCH-LOGICAL-c392t-24234443de042d4d833de731eaa094915bb11798732e45e3eb06ec17cafe167c3</cites><orcidid>0000-0002-4128-4930 ; 0000-0002-5502-0418 ; 0000-0003-4776-5222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199912100718X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,26544,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Koch, Timo</creatorcontrib><creatorcontrib>Wu, Hanchuan</creatorcontrib><creatorcontrib>Schneider, Martin</creatorcontrib><title>Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake</title><title>Journal of computational physics</title><description>•Novel numerical method for nonlinear embedded 1D-3D mixed-dimensional PDEs.•Simulations of root water uptake demonstrate accuracy and efficiency of the approach.•Accurate reconstruction of interface unknown and flux on coarse grids.•Detailed numerical investigation of underlying model assumptions.•Method is independent of discretization scheme and type of computational grid. We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications such as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyze a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.</description><subject>1d-3d Coupling</subject><subject>Computational physics</subject><subject>Domains</subject><subject>Embedded networks</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Grid refinement (mathematics)</subject><subject>Heat exchangers</subject><subject>Mathematical models</subject><subject>Mixed-dimension method</subject><subject>Nonlinear elliptic equations</subject><subject>Nonlinearity</subject><subject>Pressure dependence</subject><subject>Robustness (mathematics)</subject><subject>Root water uptake</subject><subject>Smoothing kernel</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Transpiration</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kMGOFCEQhonRxHH1ATxJ4rlHCuimiSezcdVkoxc9ExpqIr3d0ALt6NvLZPTqiUr4_j9VHyEvgR2BwfBmPs5uO3LG4QjARi4ekQMwzTquYHhMDqz9dFpreEqelTIzxsZejgfiPqe4hIg20zX8Qt_5sGIsIUW6Jo8LPaVMcZ3Qe_S07tO-NDRiPaf8UOg51O_UbtsSnK2XUE00p1Tp2VbMdN-qfcDn5MnJLgVf_H1vyLe7919vP3b3Xz58un133zmhee245EJKKTwyyb30o2ijEoDWMi019NMEoPSoBEfZo8CJDehAOXtCGJQTN-TVtdflUGqIJqZsTbPRc6NBAWvE6yux5fRjx1LNnPYc21KGD2JkSukeGgX_elIpGU9my2G1-XfrMhfbZjbNtrnYNlfbLfP2msF24M-A2RQXMDr0IaOrxqfwn_QfBT6GvQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Koch, Timo</creator><creator>Wu, Hanchuan</creator><creator>Schneider, Martin</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-4128-4930</orcidid><orcidid>https://orcid.org/0000-0002-5502-0418</orcidid><orcidid>https://orcid.org/0000-0003-4776-5222</orcidid></search><sort><creationdate>20220201</creationdate><title>Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake</title><author>Koch, Timo ; Wu, Hanchuan ; Schneider, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-24234443de042d4d833de731eaa094915bb11798732e45e3eb06ec17cafe167c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1d-3d Coupling</topic><topic>Computational physics</topic><topic>Domains</topic><topic>Embedded networks</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Grid refinement (mathematics)</topic><topic>Heat exchangers</topic><topic>Mathematical models</topic><topic>Mixed-dimension method</topic><topic>Nonlinear elliptic equations</topic><topic>Nonlinearity</topic><topic>Pressure dependence</topic><topic>Robustness (mathematics)</topic><topic>Root water uptake</topic><topic>Smoothing kernel</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Transpiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Timo</creatorcontrib><creatorcontrib>Wu, Hanchuan</creatorcontrib><creatorcontrib>Schneider, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Timo</au><au>Wu, Hanchuan</au><au>Schneider, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake</atitle><jtitle>Journal of computational physics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>450</volume><spage>110823</spage><pages>110823-</pages><artnum>110823</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•Novel numerical method for nonlinear embedded 1D-3D mixed-dimensional PDEs.•Simulations of root water uptake demonstrate accuracy and efficiency of the approach.•Accurate reconstruction of interface unknown and flux on coarse grids.•Detailed numerical investigation of underlying model assumptions.•Method is independent of discretization scheme and type of computational grid. We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications such as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyze a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110823</doi><orcidid>https://orcid.org/0000-0002-4128-4930</orcidid><orcidid>https://orcid.org/0000-0002-5502-0418</orcidid><orcidid>https://orcid.org/0000-0003-4776-5222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2022-02, Vol.450, p.110823, Article 110823
issn 0021-9991
1090-2716
language eng
recordid cdi_cristin_nora_10852_91710
source NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
subjects 1d-3d Coupling
Computational physics
Domains
Embedded networks
Exact solutions
Finite element method
Grid refinement (mathematics)
Heat exchangers
Mathematical models
Mixed-dimension method
Nonlinear elliptic equations
Nonlinearity
Pressure dependence
Robustness (mathematics)
Root water uptake
Smoothing kernel
Temperature dependence
Thermal conductivity
Transpiration
title Nonlinear mixed-dimension model for embedded tubular networks with application to root water uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20mixed-dimension%20model%20for%20embedded%20tubular%20networks%20with%20application%20to%20root%20water%20uptake&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Koch,%20Timo&rft.date=2022-02-01&rft.volume=450&rft.spage=110823&rft.pages=110823-&rft.artnum=110823&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110823&rft_dat=%3Cproquest_crist%3E2638077951%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638077951&rft_id=info:pmid/&rft_els_id=S002199912100718X&rfr_iscdi=true