A (Dual) Network Model for Heat Transfer in Porous Media

We present a dual network model to simulate coupled single-phase flow and energy transport in porous media including conditions under which local thermal equilibrium cannot be assumed. The models target applications such as the simulation of catalytic reactors, micro-fluidic experiments, or micro-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2021-10, Vol.140 (1), p.107-141
Hauptverfasser: Koch, Timo, Weishaupt Kilian, Müller Johannes, Weigand Bernhard, Helmig Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 107
container_title Transport in porous media
container_volume 140
creator Koch, Timo
Weishaupt Kilian
Müller Johannes
Weigand Bernhard
Helmig Rainer
description We present a dual network model to simulate coupled single-phase flow and energy transport in porous media including conditions under which local thermal equilibrium cannot be assumed. The models target applications such as the simulation of catalytic reactors, micro-fluidic experiments, or micro-cooling devices. The new technique is based on a recently developed algorithm that extracts both the pore space and the solid grain matrix of a porous medium from CT images into an interconnected network representation. We simulate coupled heat and mass transfer in these networks simultaneously, allowing naturally to model scenarios with heterogeneous temperature distributions in both void space and solid matrix. The model is compared with 3D conjugate heat transfer simulations for both conduction- and convection-dominated scenarios. It is shown to reproduce effective thermal conductivities over a wide range of fluid to solid thermal conductivity ratios with a single parameter set. Morevoer, it captures local thermal nonequilibrium effects in a micro-cooling device scenario.
doi_str_mv 10.1007/s11242-021-01602-5
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_91707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582477439</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1685-aaa3adce5b69690c090fb055f390a7802d225ae0fca54f85565c020fb7d54d93</originalsourceid><addsrcrecordid>eNotjktLAzEUhYMoWKt_wI0BN7qI3jzuJFmW-qjQqovuh9uZBKaWiSYz-PcdqKsDh-87HMauJTxIAPtYpFRGCVBSgKxACTxhM4lWC1lpc8pmU-uF9lKfs4tS9gCT5syMuQW_exrpcM_fw_Cb8hffpDYceEyZrwINfJupLzFk3vX8M-U0Fr4JbUeX7CzSoYSr_5yz7cvzdrkS64_Xt-ViLUhWDgURaWqbgLvKVx4a8BB3gBi1B7IOVKsUUoDYEJroECtsQE2MbdG0Xs_ZzXG2yV0Zur7uU6ZagkNVe2nBTsTtkfjO6WcMZaj3acz99KlW6JSx1miv_wD-Q1BC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582477439</pqid></control><display><type>article</type><title>A (Dual) Network Model for Heat Transfer in Porous Media</title><source>NORA - Norwegian Open Research Archives</source><source>Springer Nature - Complete Springer Journals</source><creator>Koch, Timo ; Weishaupt Kilian ; Müller Johannes ; Weigand Bernhard ; Helmig Rainer</creator><creatorcontrib>Koch, Timo ; Weishaupt Kilian ; Müller Johannes ; Weigand Bernhard ; Helmig Rainer</creatorcontrib><description>We present a dual network model to simulate coupled single-phase flow and energy transport in porous media including conditions under which local thermal equilibrium cannot be assumed. The models target applications such as the simulation of catalytic reactors, micro-fluidic experiments, or micro-cooling devices. The new technique is based on a recently developed algorithm that extracts both the pore space and the solid grain matrix of a porous medium from CT images into an interconnected network representation. We simulate coupled heat and mass transfer in these networks simultaneously, allowing naturally to model scenarios with heterogeneous temperature distributions in both void space and solid matrix. The model is compared with 3D conjugate heat transfer simulations for both conduction- and convection-dominated scenarios. It is shown to reproduce effective thermal conductivities over a wide range of fluid to solid thermal conductivity ratios with a single parameter set. Morevoer, it captures local thermal nonequilibrium effects in a micro-cooling device scenario.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-021-01602-5</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Climate change ; Computed tomography ; Conduction heating ; Conductivity ; Cooling ; Energy ; Equilibrium ; Heat conductivity ; Heat exchangers ; Heat transfer ; Mass transfer ; Porous materials ; Porous media ; Reynolds number ; Simulation ; Single-phase flow ; Thermal conductivity ; Viscosity</subject><ispartof>Transport in porous media, 2021-10, Vol.140 (1), p.107-141</ispartof><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1685-aaa3adce5b69690c090fb055f390a7802d225ae0fca54f85565c020fb7d54d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,26554,27911,27912</link.rule.ids></links><search><creatorcontrib>Koch, Timo</creatorcontrib><creatorcontrib>Weishaupt Kilian</creatorcontrib><creatorcontrib>Müller Johannes</creatorcontrib><creatorcontrib>Weigand Bernhard</creatorcontrib><creatorcontrib>Helmig Rainer</creatorcontrib><title>A (Dual) Network Model for Heat Transfer in Porous Media</title><title>Transport in porous media</title><description>We present a dual network model to simulate coupled single-phase flow and energy transport in porous media including conditions under which local thermal equilibrium cannot be assumed. The models target applications such as the simulation of catalytic reactors, micro-fluidic experiments, or micro-cooling devices. The new technique is based on a recently developed algorithm that extracts both the pore space and the solid grain matrix of a porous medium from CT images into an interconnected network representation. We simulate coupled heat and mass transfer in these networks simultaneously, allowing naturally to model scenarios with heterogeneous temperature distributions in both void space and solid matrix. The model is compared with 3D conjugate heat transfer simulations for both conduction- and convection-dominated scenarios. It is shown to reproduce effective thermal conductivities over a wide range of fluid to solid thermal conductivity ratios with a single parameter set. Morevoer, it captures local thermal nonequilibrium effects in a micro-cooling device scenario.</description><subject>Algorithms</subject><subject>Climate change</subject><subject>Computed tomography</subject><subject>Conduction heating</subject><subject>Conductivity</subject><subject>Cooling</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Heat conductivity</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Mass transfer</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Single-phase flow</subject><subject>Thermal conductivity</subject><subject>Viscosity</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>3HK</sourceid><recordid>eNotjktLAzEUhYMoWKt_wI0BN7qI3jzuJFmW-qjQqovuh9uZBKaWiSYz-PcdqKsDh-87HMauJTxIAPtYpFRGCVBSgKxACTxhM4lWC1lpc8pmU-uF9lKfs4tS9gCT5syMuQW_exrpcM_fw_Cb8hffpDYceEyZrwINfJupLzFk3vX8M-U0Fr4JbUeX7CzSoYSr_5yz7cvzdrkS64_Xt-ViLUhWDgURaWqbgLvKVx4a8BB3gBi1B7IOVKsUUoDYEJroECtsQE2MbdG0Xs_ZzXG2yV0Zur7uU6ZagkNVe2nBTsTtkfjO6WcMZaj3acz99KlW6JSx1miv_wD-Q1BC</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Koch, Timo</creator><creator>Weishaupt Kilian</creator><creator>Müller Johannes</creator><creator>Weigand Bernhard</creator><creator>Helmig Rainer</creator><general>Springer Nature B.V</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>3HK</scope></search><sort><creationdate>20211001</creationdate><title>A (Dual) Network Model for Heat Transfer in Porous Media</title><author>Koch, Timo ; Weishaupt Kilian ; Müller Johannes ; Weigand Bernhard ; Helmig Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1685-aaa3adce5b69690c090fb055f390a7802d225ae0fca54f85565c020fb7d54d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Climate change</topic><topic>Computed tomography</topic><topic>Conduction heating</topic><topic>Conductivity</topic><topic>Cooling</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Heat conductivity</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Mass transfer</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Single-phase flow</topic><topic>Thermal conductivity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Timo</creatorcontrib><creatorcontrib>Weishaupt Kilian</creatorcontrib><creatorcontrib>Müller Johannes</creatorcontrib><creatorcontrib>Weigand Bernhard</creatorcontrib><creatorcontrib>Helmig Rainer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Timo</au><au>Weishaupt Kilian</au><au>Müller Johannes</au><au>Weigand Bernhard</au><au>Helmig Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A (Dual) Network Model for Heat Transfer in Porous Media</atitle><jtitle>Transport in porous media</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>140</volume><issue>1</issue><spage>107</spage><epage>141</epage><pages>107-141</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>We present a dual network model to simulate coupled single-phase flow and energy transport in porous media including conditions under which local thermal equilibrium cannot be assumed. The models target applications such as the simulation of catalytic reactors, micro-fluidic experiments, or micro-cooling devices. The new technique is based on a recently developed algorithm that extracts both the pore space and the solid grain matrix of a porous medium from CT images into an interconnected network representation. We simulate coupled heat and mass transfer in these networks simultaneously, allowing naturally to model scenarios with heterogeneous temperature distributions in both void space and solid matrix. The model is compared with 3D conjugate heat transfer simulations for both conduction- and convection-dominated scenarios. It is shown to reproduce effective thermal conductivities over a wide range of fluid to solid thermal conductivity ratios with a single parameter set. Morevoer, it captures local thermal nonequilibrium effects in a micro-cooling device scenario.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11242-021-01602-5</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2021-10, Vol.140 (1), p.107-141
issn 0169-3913
1573-1634
language eng
recordid cdi_cristin_nora_10852_91707
source NORA - Norwegian Open Research Archives; Springer Nature - Complete Springer Journals
subjects Algorithms
Climate change
Computed tomography
Conduction heating
Conductivity
Cooling
Energy
Equilibrium
Heat conductivity
Heat exchangers
Heat transfer
Mass transfer
Porous materials
Porous media
Reynolds number
Simulation
Single-phase flow
Thermal conductivity
Viscosity
title A (Dual) Network Model for Heat Transfer in Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20(Dual)%20Network%20Model%20for%20Heat%20Transfer%20in%20Porous%20Media&rft.jtitle=Transport%20in%20porous%20media&rft.au=Koch,%20Timo&rft.date=2021-10-01&rft.volume=140&rft.issue=1&rft.spage=107&rft.epage=141&rft.pages=107-141&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-021-01602-5&rft_dat=%3Cproquest_crist%3E2582477439%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582477439&rft_id=info:pmid/&rfr_iscdi=true