Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction

In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysics 2022-04, Vol.87 (2), p.V59-V73
Hauptverfasser: Greiner, Thomas André Larsen, Lie, Jan Erik, Kolbjornsen, Odd, Kjelsrud Evensen, Andreas, Harris Nilsen, Espen, Zhao, Hao, Demyanov, Vasily, Gelius, Leiv J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page V73
container_issue 2
container_start_page V59
container_title Geophysics
container_volume 87
creator Greiner, Thomas André Larsen
Lie, Jan Erik
Kolbjornsen, Odd
Kjelsrud Evensen, Andreas
Harris Nilsen, Espen
Zhao, Hao
Demyanov, Vasily
Gelius, Leiv J
description In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconstructing the complete seismic wavefield from a subsampled and incomplete wavefield is formulated as an underdetermined inverse problem. We have investigated unsupervised deep learning based on a convolutional neural network for multidimensional wavefield reconstruction of irregularly populated traces defined on a regular grid. Our network is based on an encoder-decoder architecture with an overcomplete latent representation, including appropriate regularization penalties to stabilize the solution. We proposed a combination of penalties, which consists of the l2-norm penalty on the network parameters, and a first- and second-order total-variation penalty on the model. We determined the performance of our method on broadband synthetic data and field data represented by constant-offset gathers from a source-over-cable data set from the Barents Sea. In the field data example, we compare the results to a full production flow from a contractor company, which is based on a 5D Fourier interpolation approach. In this example, our approach displays improved reconstruction of the wavefield with less noise in the sparse near offsets compared with the industry approach, which leads to improved structural definition of the near offsets in the migrated sections.
doi_str_mv 10.1190/geo2021-0099.1
format Article
fullrecord <record><control><sourceid>geoscienceworld_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_89335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022_008588</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-21ab8f9d19ffe990d38da48e81cbaf223e7cdbe2be5ba30aaa6a4f70e6b8702e3</originalsourceid><addsrcrecordid>eNo1kM1LAzEUxIMoWKtXr-YuW_PR3SZHEb-g4MWew9vN2zayTUqSVRT_eFNaT48ZfvNghpBrzmaca3a3xiCY4BVjWs_4CZlwPReV4HVzSiaM8aZSTMpzcpHSx17OZT0hvyufxh3GT5fQUou4owNC9M6v6ZfLG7px6w3GKkSLkeaQYag-ITrILngacT0ORf0cZB8i3Y5DdtZt0adiwUATurR1HbWQoQS64FOOY7cPXJKzHoaEV8c7Jaunx_eHl2r59vz6cL-sQDYilwrQql5brvsetWZWKgtzhYp3LfRCSFx0tkXRYt2CZADQwLxfMGxatWAC5ZTcHP520aXsvPEhguFM1cIoLWVdiNk_EVKK2JtddFuI34Uy-3XNcV2zX9fwErg9BIqfOoe-w68QB2s-whhL7WQKLQqtaqXkH0TzgO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction</title><source>NORA - Norwegian Open Research Archives</source><creator>Greiner, Thomas André Larsen ; Lie, Jan Erik ; Kolbjornsen, Odd ; Kjelsrud Evensen, Andreas ; Harris Nilsen, Espen ; Zhao, Hao ; Demyanov, Vasily ; Gelius, Leiv J</creator><creatorcontrib>Greiner, Thomas André Larsen ; Lie, Jan Erik ; Kolbjornsen, Odd ; Kjelsrud Evensen, Andreas ; Harris Nilsen, Espen ; Zhao, Hao ; Demyanov, Vasily ; Gelius, Leiv J</creatorcontrib><description>In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconstructing the complete seismic wavefield from a subsampled and incomplete wavefield is formulated as an underdetermined inverse problem. We have investigated unsupervised deep learning based on a convolutional neural network for multidimensional wavefield reconstruction of irregularly populated traces defined on a regular grid. Our network is based on an encoder-decoder architecture with an overcomplete latent representation, including appropriate regularization penalties to stabilize the solution. We proposed a combination of penalties, which consists of the l2-norm penalty on the network parameters, and a first- and second-order total-variation penalty on the model. We determined the performance of our method on broadband synthetic data and field data represented by constant-offset gathers from a source-over-cable data set from the Barents Sea. In the field data example, we compare the results to a full production flow from a contractor company, which is based on a 5D Fourier interpolation approach. In this example, our approach displays improved reconstruction of the wavefield with less noise in the sparse near offsets compared with the industry approach, which leads to improved structural definition of the near offsets in the migrated sections.</description><identifier>ISSN: 0016-8033</identifier><identifier>EISSN: 1942-2156</identifier><identifier>DOI: 10.1190/geo2021-0099.1</identifier><language>eng</language><publisher>Society of Exploration Geophysicists</publisher><subject>applied (geophysical surveys &amp; methods) ; Arctic Ocean ; artificial intelligence ; Barents Sea ; data acquisition ; data processing ; deep learning ; equations ; geophysical methods ; Geophysics ; machine learning ; marine methods ; mathematical methods ; neural networks ; numerical models ; seismic methods ; three-dimensional models ; wave fields</subject><ispartof>Geophysics, 2022-04, Vol.87 (2), p.V59-V73</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by Society of Exploration Geophysicists @Tulsa, OK @USA @United States</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-21ab8f9d19ffe990d38da48e81cbaf223e7cdbe2be5ba30aaa6a4f70e6b8702e3</citedby><cites>FETCH-LOGICAL-a362t-21ab8f9d19ffe990d38da48e81cbaf223e7cdbe2be5ba30aaa6a4f70e6b8702e3</cites><orcidid>0000-0003-0991-1057 ; 0000-0001-8159-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/89335$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Greiner, Thomas André Larsen</creatorcontrib><creatorcontrib>Lie, Jan Erik</creatorcontrib><creatorcontrib>Kolbjornsen, Odd</creatorcontrib><creatorcontrib>Kjelsrud Evensen, Andreas</creatorcontrib><creatorcontrib>Harris Nilsen, Espen</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Demyanov, Vasily</creatorcontrib><creatorcontrib>Gelius, Leiv J</creatorcontrib><title>Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction</title><title>Geophysics</title><description>In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconstructing the complete seismic wavefield from a subsampled and incomplete wavefield is formulated as an underdetermined inverse problem. We have investigated unsupervised deep learning based on a convolutional neural network for multidimensional wavefield reconstruction of irregularly populated traces defined on a regular grid. Our network is based on an encoder-decoder architecture with an overcomplete latent representation, including appropriate regularization penalties to stabilize the solution. We proposed a combination of penalties, which consists of the l2-norm penalty on the network parameters, and a first- and second-order total-variation penalty on the model. We determined the performance of our method on broadband synthetic data and field data represented by constant-offset gathers from a source-over-cable data set from the Barents Sea. In the field data example, we compare the results to a full production flow from a contractor company, which is based on a 5D Fourier interpolation approach. In this example, our approach displays improved reconstruction of the wavefield with less noise in the sparse near offsets compared with the industry approach, which leads to improved structural definition of the near offsets in the migrated sections.</description><subject>applied (geophysical surveys &amp; methods)</subject><subject>Arctic Ocean</subject><subject>artificial intelligence</subject><subject>Barents Sea</subject><subject>data acquisition</subject><subject>data processing</subject><subject>deep learning</subject><subject>equations</subject><subject>geophysical methods</subject><subject>Geophysics</subject><subject>machine learning</subject><subject>marine methods</subject><subject>mathematical methods</subject><subject>neural networks</subject><subject>numerical models</subject><subject>seismic methods</subject><subject>three-dimensional models</subject><subject>wave fields</subject><issn>0016-8033</issn><issn>1942-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo1kM1LAzEUxIMoWKtXr-YuW_PR3SZHEb-g4MWew9vN2zayTUqSVRT_eFNaT48ZfvNghpBrzmaca3a3xiCY4BVjWs_4CZlwPReV4HVzSiaM8aZSTMpzcpHSx17OZT0hvyufxh3GT5fQUou4owNC9M6v6ZfLG7px6w3GKkSLkeaQYag-ITrILngacT0ORf0cZB8i3Y5DdtZt0adiwUATurR1HbWQoQS64FOOY7cPXJKzHoaEV8c7Jaunx_eHl2r59vz6cL-sQDYilwrQql5brvsetWZWKgtzhYp3LfRCSFx0tkXRYt2CZADQwLxfMGxatWAC5ZTcHP520aXsvPEhguFM1cIoLWVdiNk_EVKK2JtddFuI34Uy-3XNcV2zX9fwErg9BIqfOoe-w68QB2s-whhL7WQKLQqtaqXkH0TzgO4</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Greiner, Thomas André Larsen</creator><creator>Lie, Jan Erik</creator><creator>Kolbjornsen, Odd</creator><creator>Kjelsrud Evensen, Andreas</creator><creator>Harris Nilsen, Espen</creator><creator>Zhao, Hao</creator><creator>Demyanov, Vasily</creator><creator>Gelius, Leiv J</creator><general>Society of Exploration Geophysicists</general><general>Society of Exploration Geophysicists Foundation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-0991-1057</orcidid><orcidid>https://orcid.org/0000-0001-8159-352X</orcidid></search><sort><creationdate>202204</creationdate><title>Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction</title><author>Greiner, Thomas André Larsen ; Lie, Jan Erik ; Kolbjornsen, Odd ; Kjelsrud Evensen, Andreas ; Harris Nilsen, Espen ; Zhao, Hao ; Demyanov, Vasily ; Gelius, Leiv J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-21ab8f9d19ffe990d38da48e81cbaf223e7cdbe2be5ba30aaa6a4f70e6b8702e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>applied (geophysical surveys &amp; methods)</topic><topic>Arctic Ocean</topic><topic>artificial intelligence</topic><topic>Barents Sea</topic><topic>data acquisition</topic><topic>data processing</topic><topic>deep learning</topic><topic>equations</topic><topic>geophysical methods</topic><topic>Geophysics</topic><topic>machine learning</topic><topic>marine methods</topic><topic>mathematical methods</topic><topic>neural networks</topic><topic>numerical models</topic><topic>seismic methods</topic><topic>three-dimensional models</topic><topic>wave fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greiner, Thomas André Larsen</creatorcontrib><creatorcontrib>Lie, Jan Erik</creatorcontrib><creatorcontrib>Kolbjornsen, Odd</creatorcontrib><creatorcontrib>Kjelsrud Evensen, Andreas</creatorcontrib><creatorcontrib>Harris Nilsen, Espen</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Demyanov, Vasily</creatorcontrib><creatorcontrib>Gelius, Leiv J</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greiner, Thomas André Larsen</au><au>Lie, Jan Erik</au><au>Kolbjornsen, Odd</au><au>Kjelsrud Evensen, Andreas</au><au>Harris Nilsen, Espen</au><au>Zhao, Hao</au><au>Demyanov, Vasily</au><au>Gelius, Leiv J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction</atitle><jtitle>Geophysics</jtitle><date>2022-04</date><risdate>2022</risdate><volume>87</volume><issue>2</issue><spage>V59</spage><epage>V73</epage><pages>V59-V73</pages><issn>0016-8033</issn><eissn>1942-2156</eissn><abstract>In 3D marine seismic acquisition, the seismic wavefield is not sampled uniformly in the spatial directions. This leads to a seismic wavefield consisting of irregularly and sparsely populated traces with large gaps between consecutive sail lines, especially in the near offsets. The problem of reconstructing the complete seismic wavefield from a subsampled and incomplete wavefield is formulated as an underdetermined inverse problem. We have investigated unsupervised deep learning based on a convolutional neural network for multidimensional wavefield reconstruction of irregularly populated traces defined on a regular grid. Our network is based on an encoder-decoder architecture with an overcomplete latent representation, including appropriate regularization penalties to stabilize the solution. We proposed a combination of penalties, which consists of the l2-norm penalty on the network parameters, and a first- and second-order total-variation penalty on the model. We determined the performance of our method on broadband synthetic data and field data represented by constant-offset gathers from a source-over-cable data set from the Barents Sea. In the field data example, we compare the results to a full production flow from a contractor company, which is based on a 5D Fourier interpolation approach. In this example, our approach displays improved reconstruction of the wavefield with less noise in the sparse near offsets compared with the industry approach, which leads to improved structural definition of the near offsets in the migrated sections.</abstract><pub>Society of Exploration Geophysicists</pub><doi>10.1190/geo2021-0099.1</doi><orcidid>https://orcid.org/0000-0003-0991-1057</orcidid><orcidid>https://orcid.org/0000-0001-8159-352X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0016-8033
ispartof Geophysics, 2022-04, Vol.87 (2), p.V59-V73
issn 0016-8033
1942-2156
language eng
recordid cdi_cristin_nora_10852_89335
source NORA - Norwegian Open Research Archives
subjects applied (geophysical surveys & methods)
Arctic Ocean
artificial intelligence
Barents Sea
data acquisition
data processing
deep learning
equations
geophysical methods
Geophysics
machine learning
marine methods
mathematical methods
neural networks
numerical models
seismic methods
three-dimensional models
wave fields
title Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-geoscienceworld_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20deep%20learning%20with%20higher-order%20total-variation%20regularization%20for%20multidimensional%20seismic%20data%20reconstruction&rft.jtitle=Geophysics&rft.au=Greiner,%20Thomas%20Andr%C3%A9%20Larsen&rft.date=2022-04&rft.volume=87&rft.issue=2&rft.spage=V59&rft.epage=V73&rft.pages=V59-V73&rft.issn=0016-8033&rft.eissn=1942-2156&rft_id=info:doi/10.1190/geo2021-0099.1&rft_dat=%3Cgeoscienceworld_3HK%3E2022_008588%3C/geoscienceworld_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true