Absolute radiation tolerance of amorphous alumina coatings at room temperature
In this study structural and mechanical properties of a 1 μm thick Al2O3 coating, deposited on 316L stainless steel by Pulsed Laser Deposition (PLD), subjected to high energy ion irradiation were assessed. Mechanical properties of pristine and ion-modified specimens were investigated using the nanoi...
Gespeichert in:
Veröffentlicht in: | Ceramics international 2021-12, Vol.47 (24), p.34740-34750 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34750 |
---|---|
container_issue | 24 |
container_start_page | 34740 |
container_title | Ceramics international |
container_volume | 47 |
creator | Zaborowska, A. Kurpaska, Ł. Clozel, M. Olivier, E.J. O'Connell, J.H. Vanazzi, M. Di Fonzo, F. Azarov, A. Jóźwik, I. Frelek-Kozak, M. Diduszko, R. Neethling, J.H. Jagielski, J. |
description | In this study structural and mechanical properties of a 1 μm thick Al2O3 coating, deposited on 316L stainless steel by Pulsed Laser Deposition (PLD), subjected to high energy ion irradiation were assessed. Mechanical properties of pristine and ion-modified specimens were investigated using the nanoindentation technique. A comprehensive characterization combining Transmission Electron Microscopy and Grazing-Incidence X-ray Diffraction provided deep insight into the structure of the tested material at the nano- and micro-scale. Variation in the local atomic ordering of the irradiated zone at different doses was investigated using a reduced distribution function analysis obtained from electron diffraction data. Findings from nanoindentation measurements revealed a slight reduction in hardness of all irradiated layers. At the same time TEM examination indicated that the irradiated layer remained amorphous over the whole dpa range. No evidence of crystallization, void formation or element segregation was observed up to the highest implanted dose. Reported mechanical and structural findings were critically compared with each other pointing to the conclusion that under given irradiation conditions, over the whole range of doses used, alumina coatings exhibit excellent radiation resistance. Obtained data strongly suggest that investigated material may be considered as a promising candidate for next-generation nuclear reactors, especially LFR-type, where high corrosion protection is one of the highest prerogatives to be met. |
doi_str_mv | 10.1016/j.ceramint.2021.09.013 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_89204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272884221027929</els_id><sourcerecordid>S0272884221027929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-8785136814a1a7d90f99c2c24fbdb53f0cfbcd9b7d4e9d55219a1a24aca327e13</originalsourceid><addsrcrecordid>eNqNkMtOxCAUQInRxHH0F7R703qhL9g5aXwlE93omlBKlcm0TIBq_HvvOKNbXUHIOZebQ8g5hYwCra5WmTZeDXaMGQNGMxAZ0PyAzCiv8zQXZXVIZsBqlnJesGNyEsIKUBQFzMjjog1uPUWTeNVZFa0bk-jWOHDUJnF9ogbnN29uColaT_iJSrRDbHzFh5h454YkmmGDQpy8OSVHvVoHc7Y_5-Tl9ua5uU-XT3cPzWKZ6gJYTHnNS5pXnBaKqroT0AuhmWZF33Ztmfeg-1Z3oq27woiuLBkVCLJCaZWz2tB8Ti52c7W3AbeRo_NKUuAlk1wwKJCofggXgje93Hg7KP-JlNx2kyv5001uu0kQEruheLkTP0zr-qCtwRK_MgDUrISqLvEGDGn-f7qx8btw46Yxonq9Uw2GerfGy73eWW90lJ2zf-36BZugmzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Absolute radiation tolerance of amorphous alumina coatings at room temperature</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zaborowska, A. ; Kurpaska, Ł. ; Clozel, M. ; Olivier, E.J. ; O'Connell, J.H. ; Vanazzi, M. ; Di Fonzo, F. ; Azarov, A. ; Jóźwik, I. ; Frelek-Kozak, M. ; Diduszko, R. ; Neethling, J.H. ; Jagielski, J.</creator><creatorcontrib>Zaborowska, A. ; Kurpaska, Ł. ; Clozel, M. ; Olivier, E.J. ; O'Connell, J.H. ; Vanazzi, M. ; Di Fonzo, F. ; Azarov, A. ; Jóźwik, I. ; Frelek-Kozak, M. ; Diduszko, R. ; Neethling, J.H. ; Jagielski, J.</creatorcontrib><description>In this study structural and mechanical properties of a 1 μm thick Al2O3 coating, deposited on 316L stainless steel by Pulsed Laser Deposition (PLD), subjected to high energy ion irradiation were assessed. Mechanical properties of pristine and ion-modified specimens were investigated using the nanoindentation technique. A comprehensive characterization combining Transmission Electron Microscopy and Grazing-Incidence X-ray Diffraction provided deep insight into the structure of the tested material at the nano- and micro-scale. Variation in the local atomic ordering of the irradiated zone at different doses was investigated using a reduced distribution function analysis obtained from electron diffraction data. Findings from nanoindentation measurements revealed a slight reduction in hardness of all irradiated layers. At the same time TEM examination indicated that the irradiated layer remained amorphous over the whole dpa range. No evidence of crystallization, void formation or element segregation was observed up to the highest implanted dose. Reported mechanical and structural findings were critically compared with each other pointing to the conclusion that under given irradiation conditions, over the whole range of doses used, alumina coatings exhibit excellent radiation resistance. Obtained data strongly suggest that investigated material may be considered as a promising candidate for next-generation nuclear reactors, especially LFR-type, where high corrosion protection is one of the highest prerogatives to be met.</description><identifier>ISSN: 0272-8842</identifier><identifier>EISSN: 1873-3956</identifier><identifier>DOI: 10.1016/j.ceramint.2021.09.013</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Alumina coating ; Amorphous materials ; Ion irradiation ; Materials Science ; Materials Science, Ceramics ; Nanoindentation ; Science & Technology ; Technology ; Transmission electron microscopy</subject><ispartof>Ceramics international, 2021-12, Vol.47 (24), p.34740-34750</ispartof><rights>2021 Elsevier Ltd and Techna Group S.r.l.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725067500002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c402t-8785136814a1a7d90f99c2c24fbdb53f0cfbcd9b7d4e9d55219a1a24aca327e13</citedby><cites>FETCH-LOGICAL-c402t-8785136814a1a7d90f99c2c24fbdb53f0cfbcd9b7d4e9d55219a1a24aca327e13</cites><orcidid>0000-0002-0894-0510 ; 0000-0003-0602-9624 ; 0000-0001-5750-2691 ; 0000-0002-4060-4023 ; 0000-0002-1071-3309 ; 0000-0001-5581-7948 ; 0000-0002-3758-3997 ; 0000-0002-9264-1731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ceramint.2021.09.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,26572,27929,27930,39263,46000</link.rule.ids></links><search><creatorcontrib>Zaborowska, A.</creatorcontrib><creatorcontrib>Kurpaska, Ł.</creatorcontrib><creatorcontrib>Clozel, M.</creatorcontrib><creatorcontrib>Olivier, E.J.</creatorcontrib><creatorcontrib>O'Connell, J.H.</creatorcontrib><creatorcontrib>Vanazzi, M.</creatorcontrib><creatorcontrib>Di Fonzo, F.</creatorcontrib><creatorcontrib>Azarov, A.</creatorcontrib><creatorcontrib>Jóźwik, I.</creatorcontrib><creatorcontrib>Frelek-Kozak, M.</creatorcontrib><creatorcontrib>Diduszko, R.</creatorcontrib><creatorcontrib>Neethling, J.H.</creatorcontrib><creatorcontrib>Jagielski, J.</creatorcontrib><title>Absolute radiation tolerance of amorphous alumina coatings at room temperature</title><title>Ceramics international</title><addtitle>CERAM INT</addtitle><description>In this study structural and mechanical properties of a 1 μm thick Al2O3 coating, deposited on 316L stainless steel by Pulsed Laser Deposition (PLD), subjected to high energy ion irradiation were assessed. Mechanical properties of pristine and ion-modified specimens were investigated using the nanoindentation technique. A comprehensive characterization combining Transmission Electron Microscopy and Grazing-Incidence X-ray Diffraction provided deep insight into the structure of the tested material at the nano- and micro-scale. Variation in the local atomic ordering of the irradiated zone at different doses was investigated using a reduced distribution function analysis obtained from electron diffraction data. Findings from nanoindentation measurements revealed a slight reduction in hardness of all irradiated layers. At the same time TEM examination indicated that the irradiated layer remained amorphous over the whole dpa range. No evidence of crystallization, void formation or element segregation was observed up to the highest implanted dose. Reported mechanical and structural findings were critically compared with each other pointing to the conclusion that under given irradiation conditions, over the whole range of doses used, alumina coatings exhibit excellent radiation resistance. Obtained data strongly suggest that investigated material may be considered as a promising candidate for next-generation nuclear reactors, especially LFR-type, where high corrosion protection is one of the highest prerogatives to be met.</description><subject>Alumina coating</subject><subject>Amorphous materials</subject><subject>Ion irradiation</subject><subject>Materials Science</subject><subject>Materials Science, Ceramics</subject><subject>Nanoindentation</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Transmission electron microscopy</subject><issn>0272-8842</issn><issn>1873-3956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>3HK</sourceid><recordid>eNqNkMtOxCAUQInRxHH0F7R703qhL9g5aXwlE93omlBKlcm0TIBq_HvvOKNbXUHIOZebQ8g5hYwCra5WmTZeDXaMGQNGMxAZ0PyAzCiv8zQXZXVIZsBqlnJesGNyEsIKUBQFzMjjog1uPUWTeNVZFa0bk-jWOHDUJnF9ogbnN29uColaT_iJSrRDbHzFh5h454YkmmGDQpy8OSVHvVoHc7Y_5-Tl9ua5uU-XT3cPzWKZ6gJYTHnNS5pXnBaKqroT0AuhmWZF33Ztmfeg-1Z3oq27woiuLBkVCLJCaZWz2tB8Ti52c7W3AbeRo_NKUuAlk1wwKJCofggXgje93Hg7KP-JlNx2kyv5001uu0kQEruheLkTP0zr-qCtwRK_MgDUrISqLvEGDGn-f7qx8btw46Yxonq9Uw2GerfGy73eWW90lJ2zf-36BZugmzU</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Zaborowska, A.</creator><creator>Kurpaska, Ł.</creator><creator>Clozel, M.</creator><creator>Olivier, E.J.</creator><creator>O'Connell, J.H.</creator><creator>Vanazzi, M.</creator><creator>Di Fonzo, F.</creator><creator>Azarov, A.</creator><creator>Jóźwik, I.</creator><creator>Frelek-Kozak, M.</creator><creator>Diduszko, R.</creator><creator>Neethling, J.H.</creator><creator>Jagielski, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-0894-0510</orcidid><orcidid>https://orcid.org/0000-0003-0602-9624</orcidid><orcidid>https://orcid.org/0000-0001-5750-2691</orcidid><orcidid>https://orcid.org/0000-0002-4060-4023</orcidid><orcidid>https://orcid.org/0000-0002-1071-3309</orcidid><orcidid>https://orcid.org/0000-0001-5581-7948</orcidid><orcidid>https://orcid.org/0000-0002-3758-3997</orcidid><orcidid>https://orcid.org/0000-0002-9264-1731</orcidid></search><sort><creationdate>20211215</creationdate><title>Absolute radiation tolerance of amorphous alumina coatings at room temperature</title><author>Zaborowska, A. ; Kurpaska, Ł. ; Clozel, M. ; Olivier, E.J. ; O'Connell, J.H. ; Vanazzi, M. ; Di Fonzo, F. ; Azarov, A. ; Jóźwik, I. ; Frelek-Kozak, M. ; Diduszko, R. ; Neethling, J.H. ; Jagielski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-8785136814a1a7d90f99c2c24fbdb53f0cfbcd9b7d4e9d55219a1a24aca327e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alumina coating</topic><topic>Amorphous materials</topic><topic>Ion irradiation</topic><topic>Materials Science</topic><topic>Materials Science, Ceramics</topic><topic>Nanoindentation</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaborowska, A.</creatorcontrib><creatorcontrib>Kurpaska, Ł.</creatorcontrib><creatorcontrib>Clozel, M.</creatorcontrib><creatorcontrib>Olivier, E.J.</creatorcontrib><creatorcontrib>O'Connell, J.H.</creatorcontrib><creatorcontrib>Vanazzi, M.</creatorcontrib><creatorcontrib>Di Fonzo, F.</creatorcontrib><creatorcontrib>Azarov, A.</creatorcontrib><creatorcontrib>Jóźwik, I.</creatorcontrib><creatorcontrib>Frelek-Kozak, M.</creatorcontrib><creatorcontrib>Diduszko, R.</creatorcontrib><creatorcontrib>Neethling, J.H.</creatorcontrib><creatorcontrib>Jagielski, J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Ceramics international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaborowska, A.</au><au>Kurpaska, Ł.</au><au>Clozel, M.</au><au>Olivier, E.J.</au><au>O'Connell, J.H.</au><au>Vanazzi, M.</au><au>Di Fonzo, F.</au><au>Azarov, A.</au><au>Jóźwik, I.</au><au>Frelek-Kozak, M.</au><au>Diduszko, R.</au><au>Neethling, J.H.</au><au>Jagielski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute radiation tolerance of amorphous alumina coatings at room temperature</atitle><jtitle>Ceramics international</jtitle><stitle>CERAM INT</stitle><date>2021-12-15</date><risdate>2021</risdate><volume>47</volume><issue>24</issue><spage>34740</spage><epage>34750</epage><pages>34740-34750</pages><issn>0272-8842</issn><eissn>1873-3956</eissn><abstract>In this study structural and mechanical properties of a 1 μm thick Al2O3 coating, deposited on 316L stainless steel by Pulsed Laser Deposition (PLD), subjected to high energy ion irradiation were assessed. Mechanical properties of pristine and ion-modified specimens were investigated using the nanoindentation technique. A comprehensive characterization combining Transmission Electron Microscopy and Grazing-Incidence X-ray Diffraction provided deep insight into the structure of the tested material at the nano- and micro-scale. Variation in the local atomic ordering of the irradiated zone at different doses was investigated using a reduced distribution function analysis obtained from electron diffraction data. Findings from nanoindentation measurements revealed a slight reduction in hardness of all irradiated layers. At the same time TEM examination indicated that the irradiated layer remained amorphous over the whole dpa range. No evidence of crystallization, void formation or element segregation was observed up to the highest implanted dose. Reported mechanical and structural findings were critically compared with each other pointing to the conclusion that under given irradiation conditions, over the whole range of doses used, alumina coatings exhibit excellent radiation resistance. Obtained data strongly suggest that investigated material may be considered as a promising candidate for next-generation nuclear reactors, especially LFR-type, where high corrosion protection is one of the highest prerogatives to be met.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ceramint.2021.09.013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0894-0510</orcidid><orcidid>https://orcid.org/0000-0003-0602-9624</orcidid><orcidid>https://orcid.org/0000-0001-5750-2691</orcidid><orcidid>https://orcid.org/0000-0002-4060-4023</orcidid><orcidid>https://orcid.org/0000-0002-1071-3309</orcidid><orcidid>https://orcid.org/0000-0001-5581-7948</orcidid><orcidid>https://orcid.org/0000-0002-3758-3997</orcidid><orcidid>https://orcid.org/0000-0002-9264-1731</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8842 |
ispartof | Ceramics international, 2021-12, Vol.47 (24), p.34740-34750 |
issn | 0272-8842 1873-3956 |
language | eng |
recordid | cdi_cristin_nora_10852_89204 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Alumina coating Amorphous materials Ion irradiation Materials Science Materials Science, Ceramics Nanoindentation Science & Technology Technology Transmission electron microscopy |
title | Absolute radiation tolerance of amorphous alumina coatings at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20radiation%20tolerance%20of%20amorphous%20alumina%20coatings%20at%20room%20temperature&rft.jtitle=Ceramics%20international&rft.au=Zaborowska,%20A.&rft.date=2021-12-15&rft.volume=47&rft.issue=24&rft.spage=34740&rft.epage=34750&rft.pages=34740-34750&rft.issn=0272-8842&rft.eissn=1873-3956&rft_id=info:doi/10.1016/j.ceramint.2021.09.013&rft_dat=%3Celsevier_crist%3ES0272884221027929%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0272884221027929&rfr_iscdi=true |