A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2021
Hauptverfasser: Jha, Debesh, Ali, Sharib, Hicks, Steven, Thambawita, Vajira L B, Borgli, Hanna, Smedsrud, Pia H, de Lange, Thomas, Pogorelov, Konstantin, Wang, Xiaowei, Harzig, Philipp, Tran, Minh-Triet, Meng, Wenhua, Hoang, Trung-Hieu, Dias, Danielle, Ko, Tobey H, Agrawal, Taruna, Ostroukhova, Olga, Khan, Zeshan, Tahir, Muhammed Atif, Liu, Yang, Chang, Yuan, Kirkerød, Mathias, Johansen, Dag, Lux, Mathias, Johansen, Håvard D, Riegler, Michael, Halvorsen, Pål
Format: Artikel
Sprache:nor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Medical image analysis
container_volume
creator Jha, Debesh
Ali, Sharib
Hicks, Steven
Thambawita, Vajira L B
Borgli, Hanna
Smedsrud, Pia H
de Lange, Thomas
Pogorelov, Konstantin
Wang, Xiaowei
Harzig, Philipp
Tran, Minh-Triet
Meng, Wenhua
Hoang, Trung-Hieu
Dias, Danielle
Ko, Tobey H
Agrawal, Taruna
Ostroukhova, Olga
Khan, Zeshan
Tahir, Muhammed Atif
Liu, Yang
Chang, Yuan
Kirkerød, Mathias
Johansen, Dag
Lux, Mathias
Johansen, Håvard D
Riegler, Michael
Halvorsen, Pål
description Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.
format Article
fullrecord <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10852_88559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_88559</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_885593</originalsourceid><addsrcrecordid>eNqFi0sKwjAUAIMoWD9n8F1ASD_RuBRRPIALd-WRpu2TNil5QejtVRC3rmYWMxORpPku3eoiy6c_T9VcLJgfUsp9UchE3I9gfD8E21rH9LSADruRicHXYDpkppoMRvIOehtbXzGQgwY5Bk8uWo70PsC6yrPxwwjUY0OuWYlZjR3b9ZdLsbmcb6fr1gT6PKXzActUapWVWit1yP8XLwZCQMs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals</source><creator>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira L B ; Borgli, Hanna ; Smedsrud, Pia H ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Tahir, Muhammed Atif ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D ; Riegler, Michael ; Halvorsen, Pål</creator><creatorcontrib>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira L B ; Borgli, Hanna ; Smedsrud, Pia H ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Tahir, Muhammed Atif ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D ; Riegler, Michael ; Halvorsen, Pål</creatorcontrib><description>Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><language>nor</language><ispartof>Medical image analysis, 2021</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,26544</link.rule.ids></links><search><creatorcontrib>Jha, Debesh</creatorcontrib><creatorcontrib>Ali, Sharib</creatorcontrib><creatorcontrib>Hicks, Steven</creatorcontrib><creatorcontrib>Thambawita, Vajira L B</creatorcontrib><creatorcontrib>Borgli, Hanna</creatorcontrib><creatorcontrib>Smedsrud, Pia H</creatorcontrib><creatorcontrib>de Lange, Thomas</creatorcontrib><creatorcontrib>Pogorelov, Konstantin</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Harzig, Philipp</creatorcontrib><creatorcontrib>Tran, Minh-Triet</creatorcontrib><creatorcontrib>Meng, Wenhua</creatorcontrib><creatorcontrib>Hoang, Trung-Hieu</creatorcontrib><creatorcontrib>Dias, Danielle</creatorcontrib><creatorcontrib>Ko, Tobey H</creatorcontrib><creatorcontrib>Agrawal, Taruna</creatorcontrib><creatorcontrib>Ostroukhova, Olga</creatorcontrib><creatorcontrib>Khan, Zeshan</creatorcontrib><creatorcontrib>Tahir, Muhammed Atif</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chang, Yuan</creatorcontrib><creatorcontrib>Kirkerød, Mathias</creatorcontrib><creatorcontrib>Johansen, Dag</creatorcontrib><creatorcontrib>Lux, Mathias</creatorcontrib><creatorcontrib>Johansen, Håvard D</creatorcontrib><creatorcontrib>Riegler, Michael</creatorcontrib><creatorcontrib>Halvorsen, Pål</creatorcontrib><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><title>Medical image analysis</title><description>Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</description><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqFi0sKwjAUAIMoWD9n8F1ASD_RuBRRPIALd-WRpu2TNil5QejtVRC3rmYWMxORpPku3eoiy6c_T9VcLJgfUsp9UchE3I9gfD8E21rH9LSADruRicHXYDpkppoMRvIOehtbXzGQgwY5Bk8uWo70PsC6yrPxwwjUY0OuWYlZjR3b9ZdLsbmcb6fr1gT6PKXzActUapWVWit1yP8XLwZCQMs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jha, Debesh</creator><creator>Ali, Sharib</creator><creator>Hicks, Steven</creator><creator>Thambawita, Vajira L B</creator><creator>Borgli, Hanna</creator><creator>Smedsrud, Pia H</creator><creator>de Lange, Thomas</creator><creator>Pogorelov, Konstantin</creator><creator>Wang, Xiaowei</creator><creator>Harzig, Philipp</creator><creator>Tran, Minh-Triet</creator><creator>Meng, Wenhua</creator><creator>Hoang, Trung-Hieu</creator><creator>Dias, Danielle</creator><creator>Ko, Tobey H</creator><creator>Agrawal, Taruna</creator><creator>Ostroukhova, Olga</creator><creator>Khan, Zeshan</creator><creator>Tahir, Muhammed Atif</creator><creator>Liu, Yang</creator><creator>Chang, Yuan</creator><creator>Kirkerød, Mathias</creator><creator>Johansen, Dag</creator><creator>Lux, Mathias</creator><creator>Johansen, Håvard D</creator><creator>Riegler, Michael</creator><creator>Halvorsen, Pål</creator><scope>3HK</scope></search><sort><creationdate>2021</creationdate><title>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</title><author>Jha, Debesh ; Ali, Sharib ; Hicks, Steven ; Thambawita, Vajira L B ; Borgli, Hanna ; Smedsrud, Pia H ; de Lange, Thomas ; Pogorelov, Konstantin ; Wang, Xiaowei ; Harzig, Philipp ; Tran, Minh-Triet ; Meng, Wenhua ; Hoang, Trung-Hieu ; Dias, Danielle ; Ko, Tobey H ; Agrawal, Taruna ; Ostroukhova, Olga ; Khan, Zeshan ; Tahir, Muhammed Atif ; Liu, Yang ; Chang, Yuan ; Kirkerød, Mathias ; Johansen, Dag ; Lux, Mathias ; Johansen, Håvard D ; Riegler, Michael ; Halvorsen, Pål</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_885593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>nor</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jha, Debesh</creatorcontrib><creatorcontrib>Ali, Sharib</creatorcontrib><creatorcontrib>Hicks, Steven</creatorcontrib><creatorcontrib>Thambawita, Vajira L B</creatorcontrib><creatorcontrib>Borgli, Hanna</creatorcontrib><creatorcontrib>Smedsrud, Pia H</creatorcontrib><creatorcontrib>de Lange, Thomas</creatorcontrib><creatorcontrib>Pogorelov, Konstantin</creatorcontrib><creatorcontrib>Wang, Xiaowei</creatorcontrib><creatorcontrib>Harzig, Philipp</creatorcontrib><creatorcontrib>Tran, Minh-Triet</creatorcontrib><creatorcontrib>Meng, Wenhua</creatorcontrib><creatorcontrib>Hoang, Trung-Hieu</creatorcontrib><creatorcontrib>Dias, Danielle</creatorcontrib><creatorcontrib>Ko, Tobey H</creatorcontrib><creatorcontrib>Agrawal, Taruna</creatorcontrib><creatorcontrib>Ostroukhova, Olga</creatorcontrib><creatorcontrib>Khan, Zeshan</creatorcontrib><creatorcontrib>Tahir, Muhammed Atif</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Chang, Yuan</creatorcontrib><creatorcontrib>Kirkerød, Mathias</creatorcontrib><creatorcontrib>Johansen, Dag</creatorcontrib><creatorcontrib>Lux, Mathias</creatorcontrib><creatorcontrib>Johansen, Håvard D</creatorcontrib><creatorcontrib>Riegler, Michael</creatorcontrib><creatorcontrib>Halvorsen, Pål</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jha, Debesh</au><au>Ali, Sharib</au><au>Hicks, Steven</au><au>Thambawita, Vajira L B</au><au>Borgli, Hanna</au><au>Smedsrud, Pia H</au><au>de Lange, Thomas</au><au>Pogorelov, Konstantin</au><au>Wang, Xiaowei</au><au>Harzig, Philipp</au><au>Tran, Minh-Triet</au><au>Meng, Wenhua</au><au>Hoang, Trung-Hieu</au><au>Dias, Danielle</au><au>Ko, Tobey H</au><au>Agrawal, Taruna</au><au>Ostroukhova, Olga</au><au>Khan, Zeshan</au><au>Tahir, Muhammed Atif</au><au>Liu, Yang</au><au>Chang, Yuan</au><au>Kirkerød, Mathias</au><au>Johansen, Dag</au><au>Lux, Mathias</au><au>Johansen, Håvard D</au><au>Riegler, Michael</au><au>Halvorsen, Pål</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging</atitle><jtitle>Medical image analysis</jtitle><date>2021</date><risdate>2021</risdate><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2021
issn 1361-8415
1361-8423
language nor
recordid cdi_cristin_nora_10852_88559
source NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals
title A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20analysis%20of%20classification%20methods%20in%20gastrointestinal%20endoscopy%20imaging&rft.jtitle=Medical%20image%20analysis&rft.au=Jha,%20Debesh&rft.date=2021&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/&rft_dat=%3Ccristin%3E10852_88559%3C/cristin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true