Accurate discretization of poroelasticity without Darcy stability: Stokes–Biot stability revisited
In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and converge...
Gespeichert in:
Veröffentlicht in: | BIT Numerical Mathematics 2021-09, Vol.61 (3), p.941-976 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 976 |
---|---|
container_issue | 3 |
container_start_page | 941 |
container_title | BIT Numerical Mathematics |
container_volume | 61 |
creator | Mardal, Kent-Andre Rognes, Marie E. Thompson, Travis B. |
description | In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes. |
doi_str_mv | 10.1007/s10543-021-00849-0 |
format | Article |
fullrecord | <record><control><sourceid>crossref_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_86364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10543_021_00849_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-66017f3885fa827ad6db2f352a698b2a43210fe4b32c831ee325a446a22dc8b53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gBf3D0Qnk002eyz1Ewpe9Byy2URT6qYkKVJ_vdHq1dPA8LwvMw8hFwyuGEB3nRmIllNARgFU21M4IDMmOqQ9Q3FIZgAgKVdcHJOTnFcA2EvGZ2Q-t3abTHHNGLJNroRPU0KcmuibTUzRrU0uwYayaz5CeYvb0tyYZHdNLmYI67o_I0ferLM7_52n5OXu9nnxQJdP94-L-ZJalLJQKYF1nislvFHYmVGOA3ou0MheDWhajgy8aweOVnHmHEdh2lYaxNGqQfBTcrnvtSnUkyY9xWQ0AyVQK8llWwn8I2LOyXm9SeHdpF2l9Lcmvdekqyb9o0lDDfF9KFd4enVJr-I2TfWT_1Jf_1Rp7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate discretization of poroelasticity without Darcy stability: Stokes–Biot stability revisited</title><source>NORA - Norwegian Open Research Archives</source><source>SpringerLink Journals</source><creator>Mardal, Kent-Andre ; Rognes, Marie E. ; Thompson, Travis B.</creator><creatorcontrib>Mardal, Kent-Andre ; Rognes, Marie E. ; Thompson, Travis B.</creatorcontrib><description>In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-021-00849-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Numeric Computing</subject><ispartof>BIT Numerical Mathematics, 2021-09, Vol.61 (3), p.941-976</ispartof><rights>The Author(s) 2021</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-66017f3885fa827ad6db2f352a698b2a43210fe4b32c831ee325a446a22dc8b53</cites><orcidid>0000-0001-8696-4115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-021-00849-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-021-00849-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,26544,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mardal, Kent-Andre</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><creatorcontrib>Thompson, Travis B.</creatorcontrib><title>Accurate discretization of poroelasticity without Darcy stability: Stokes–Biot stability revisited</title><title>BIT Numerical Mathematics</title><addtitle>Bit Numer Math</addtitle><description>In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>3HK</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gBf3D0Qnk002eyz1Ewpe9Byy2URT6qYkKVJ_vdHq1dPA8LwvMw8hFwyuGEB3nRmIllNARgFU21M4IDMmOqQ9Q3FIZgAgKVdcHJOTnFcA2EvGZ2Q-t3abTHHNGLJNroRPU0KcmuibTUzRrU0uwYayaz5CeYvb0tyYZHdNLmYI67o_I0ferLM7_52n5OXu9nnxQJdP94-L-ZJalLJQKYF1nislvFHYmVGOA3ou0MheDWhajgy8aweOVnHmHEdh2lYaxNGqQfBTcrnvtSnUkyY9xWQ0AyVQK8llWwn8I2LOyXm9SeHdpF2l9Lcmvdekqyb9o0lDDfF9KFd4enVJr-I2TfWT_1Jf_1Rp7g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Mardal, Kent-Andre</creator><creator>Rognes, Marie E.</creator><creator>Thompson, Travis B.</creator><general>Springer Netherlands</general><general>BMJ Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-8696-4115</orcidid></search><sort><creationdate>20210901</creationdate><title>Accurate discretization of poroelasticity without Darcy stability</title><author>Mardal, Kent-Andre ; Rognes, Marie E. ; Thompson, Travis B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-66017f3885fa827ad6db2f352a698b2a43210fe4b32c831ee325a446a22dc8b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mardal, Kent-Andre</creatorcontrib><creatorcontrib>Rognes, Marie E.</creatorcontrib><creatorcontrib>Thompson, Travis B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>BIT Numerical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mardal, Kent-Andre</au><au>Rognes, Marie E.</au><au>Thompson, Travis B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate discretization of poroelasticity without Darcy stability: Stokes–Biot stability revisited</atitle><jtitle>BIT Numerical Mathematics</jtitle><stitle>Bit Numer Math</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>61</volume><issue>3</issue><spage>941</spage><epage>976</epage><pages>941-976</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-021-00849-0</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-8696-4115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3835 |
ispartof | BIT Numerical Mathematics, 2021-09, Vol.61 (3), p.941-976 |
issn | 0006-3835 1572-9125 |
language | eng |
recordid | cdi_cristin_nora_10852_86364 |
source | NORA - Norwegian Open Research Archives; SpringerLink Journals |
subjects | Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics Numeric Computing |
title | Accurate discretization of poroelasticity without Darcy stability: Stokes–Biot stability revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20discretization%20of%20poroelasticity%20without%20Darcy%20stability:%20Stokes%E2%80%93Biot%20stability%20revisited&rft.jtitle=BIT%20Numerical%20Mathematics&rft.au=Mardal,%20Kent-Andre&rft.date=2021-09-01&rft.volume=61&rft.issue=3&rft.spage=941&rft.epage=976&rft.pages=941-976&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-021-00849-0&rft_dat=%3Ccrossref_crist%3E10_1007_s10543_021_00849_0%3C/crossref_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |