Modelling the solar transition region using an adaptive conduction method
Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating....
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2020-03, Vol.635, p.A168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A168 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 635 |
creator | Johnston, C. D. Cargill, P. J. Hood, A. W. De Moortel, I. Bradshaw, S. J. Vaseekar, A. C. |
description | Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion. |
doi_str_mv | 10.1051/0004-6361/201936979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_82980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487115037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKu_wIUDrsfmezJLKX4UKm50HTKZpE2ZJjXJCP57M1ZdXR7vcN_jAHCN4B2CDC0ghLTmhKMFhqglvG3aEzBDlOAaNpSfgtk_cQ4uUtqVESNBZmD1EnozDM5vqrw1VQqDilWOyieXXfBVNJspxjQRyleqV4fsPk2lg-9H_cPsTd6G_hKcWTUkc_Wbc_D--PC2fK7Xr0-r5f261oTyXIuG9YZoorhuWYsYFJgoKyxnWLPyemeg7cqKUY5tRzuMmKI9Uo2wCqIOkjm4Ofbq6FJ2XvoQlURQMCwFbsVE3B6JQwwfo0lZ7sIYfXlKYioaVI6SplDkryekFI2Vh-j2Kn6VLjlZlZMzOTmT_1bJN3EMaEE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487115037</pqid></control><display><type>article</type><title>Modelling the solar transition region using an adaptive conduction method</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>NORA - Norwegian Open Research Archives</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</creator><creatorcontrib>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</creatorcontrib><description>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201936979</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Computational fluid dynamics ; Dimensional stability ; Enthalpy ; Fluid flow ; Heat exchange ; Heating ; Hydrodynamic equations ; Magnetohydrodynamics ; Mathematical models ; Numerical stability ; Robustness (mathematics) ; Solar transition region</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-03, Vol.635, p.A168</ispartof><rights>Copyright EDP Sciences Mar 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</citedby><cites>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</cites><orcidid>0000-0002-3300-6041 ; 0000-0003-2620-2068 ; 0000-0003-4023-9887 ; 0000-0001-7596-5921 ; 0000-0002-1452-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnston, C. D.</creatorcontrib><creatorcontrib>Cargill, P. J.</creatorcontrib><creatorcontrib>Hood, A. W.</creatorcontrib><creatorcontrib>De Moortel, I.</creatorcontrib><creatorcontrib>Bradshaw, S. J.</creatorcontrib><creatorcontrib>Vaseekar, A. C.</creatorcontrib><title>Modelling the solar transition region using an adaptive conduction method</title><title>Astronomy and astrophysics (Berlin)</title><description>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</description><subject>Computational fluid dynamics</subject><subject>Dimensional stability</subject><subject>Enthalpy</subject><subject>Fluid flow</subject><subject>Heat exchange</subject><subject>Heating</subject><subject>Hydrodynamic equations</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical stability</subject><subject>Robustness (mathematics)</subject><subject>Solar transition region</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kE1LAzEURYMoWKu_wIUDrsfmezJLKX4UKm50HTKZpE2ZJjXJCP57M1ZdXR7vcN_jAHCN4B2CDC0ghLTmhKMFhqglvG3aEzBDlOAaNpSfgtk_cQ4uUtqVESNBZmD1EnozDM5vqrw1VQqDilWOyieXXfBVNJspxjQRyleqV4fsPk2lg-9H_cPsTd6G_hKcWTUkc_Wbc_D--PC2fK7Xr0-r5f261oTyXIuG9YZoorhuWYsYFJgoKyxnWLPyemeg7cqKUY5tRzuMmKI9Uo2wCqIOkjm4Ofbq6FJ2XvoQlURQMCwFbsVE3B6JQwwfo0lZ7sIYfXlKYioaVI6SplDkryekFI2Vh-j2Kn6VLjlZlZMzOTmT_1bJN3EMaEE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Johnston, C. D.</creator><creator>Cargill, P. J.</creator><creator>Hood, A. W.</creator><creator>De Moortel, I.</creator><creator>Bradshaw, S. J.</creator><creator>Vaseekar, A. C.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-3300-6041</orcidid><orcidid>https://orcid.org/0000-0003-2620-2068</orcidid><orcidid>https://orcid.org/0000-0003-4023-9887</orcidid><orcidid>https://orcid.org/0000-0001-7596-5921</orcidid><orcidid>https://orcid.org/0000-0002-1452-9330</orcidid></search><sort><creationdate>20200301</creationdate><title>Modelling the solar transition region using an adaptive conduction method</title><author>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Dimensional stability</topic><topic>Enthalpy</topic><topic>Fluid flow</topic><topic>Heat exchange</topic><topic>Heating</topic><topic>Hydrodynamic equations</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical stability</topic><topic>Robustness (mathematics)</topic><topic>Solar transition region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, C. D.</creatorcontrib><creatorcontrib>Cargill, P. J.</creatorcontrib><creatorcontrib>Hood, A. W.</creatorcontrib><creatorcontrib>De Moortel, I.</creatorcontrib><creatorcontrib>Bradshaw, S. J.</creatorcontrib><creatorcontrib>Vaseekar, A. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, C. D.</au><au>Cargill, P. J.</au><au>Hood, A. W.</au><au>De Moortel, I.</au><au>Bradshaw, S. J.</au><au>Vaseekar, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the solar transition region using an adaptive conduction method</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>635</volume><spage>A168</spage><pages>A168-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936979</doi><orcidid>https://orcid.org/0000-0002-3300-6041</orcidid><orcidid>https://orcid.org/0000-0003-2620-2068</orcidid><orcidid>https://orcid.org/0000-0003-4023-9887</orcidid><orcidid>https://orcid.org/0000-0001-7596-5921</orcidid><orcidid>https://orcid.org/0000-0002-1452-9330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2020-03, Vol.635, p.A168 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_cristin_nora_10852_82980 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; NORA - Norwegian Open Research Archives; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Computational fluid dynamics Dimensional stability Enthalpy Fluid flow Heat exchange Heating Hydrodynamic equations Magnetohydrodynamics Mathematical models Numerical stability Robustness (mathematics) Solar transition region |
title | Modelling the solar transition region using an adaptive conduction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20solar%20transition%20region%20using%20an%20adaptive%20conduction%20method&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Johnston,%20C.%20D.&rft.date=2020-03-01&rft.volume=635&rft.spage=A168&rft.pages=A168-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936979&rft_dat=%3Cproquest_crist%3E2487115037%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487115037&rft_id=info:pmid/&rfr_iscdi=true |