Modelling the solar transition region using an adaptive conduction method

Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2020-03, Vol.635, p.A168
Hauptverfasser: Johnston, C. D., Cargill, P. J., Hood, A. W., De Moortel, I., Bradshaw, S. J., Vaseekar, A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A168
container_title Astronomy and astrophysics (Berlin)
container_volume 635
creator Johnston, C. D.
Cargill, P. J.
Hood, A. W.
De Moortel, I.
Bradshaw, S. J.
Vaseekar, A. C.
description Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.
doi_str_mv 10.1051/0004-6361/201936979
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_82980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487115037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKu_wIUDrsfmezJLKX4UKm50HTKZpE2ZJjXJCP57M1ZdXR7vcN_jAHCN4B2CDC0ghLTmhKMFhqglvG3aEzBDlOAaNpSfgtk_cQ4uUtqVESNBZmD1EnozDM5vqrw1VQqDilWOyieXXfBVNJspxjQRyleqV4fsPk2lg-9H_cPsTd6G_hKcWTUkc_Wbc_D--PC2fK7Xr0-r5f261oTyXIuG9YZoorhuWYsYFJgoKyxnWLPyemeg7cqKUY5tRzuMmKI9Uo2wCqIOkjm4Ofbq6FJ2XvoQlURQMCwFbsVE3B6JQwwfo0lZ7sIYfXlKYioaVI6SplDkryekFI2Vh-j2Kn6VLjlZlZMzOTmT_1bJN3EMaEE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487115037</pqid></control><display><type>article</type><title>Modelling the solar transition region using an adaptive conduction method</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>NORA - Norwegian Open Research Archives</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</creator><creatorcontrib>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</creatorcontrib><description>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201936979</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Computational fluid dynamics ; Dimensional stability ; Enthalpy ; Fluid flow ; Heat exchange ; Heating ; Hydrodynamic equations ; Magnetohydrodynamics ; Mathematical models ; Numerical stability ; Robustness (mathematics) ; Solar transition region</subject><ispartof>Astronomy and astrophysics (Berlin), 2020-03, Vol.635, p.A168</ispartof><rights>Copyright EDP Sciences Mar 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</citedby><cites>FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</cites><orcidid>0000-0002-3300-6041 ; 0000-0003-2620-2068 ; 0000-0003-4023-9887 ; 0000-0001-7596-5921 ; 0000-0002-1452-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnston, C. D.</creatorcontrib><creatorcontrib>Cargill, P. J.</creatorcontrib><creatorcontrib>Hood, A. W.</creatorcontrib><creatorcontrib>De Moortel, I.</creatorcontrib><creatorcontrib>Bradshaw, S. J.</creatorcontrib><creatorcontrib>Vaseekar, A. C.</creatorcontrib><title>Modelling the solar transition region using an adaptive conduction method</title><title>Astronomy and astrophysics (Berlin)</title><description>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</description><subject>Computational fluid dynamics</subject><subject>Dimensional stability</subject><subject>Enthalpy</subject><subject>Fluid flow</subject><subject>Heat exchange</subject><subject>Heating</subject><subject>Hydrodynamic equations</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical stability</subject><subject>Robustness (mathematics)</subject><subject>Solar transition region</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo9kE1LAzEURYMoWKu_wIUDrsfmezJLKX4UKm50HTKZpE2ZJjXJCP57M1ZdXR7vcN_jAHCN4B2CDC0ghLTmhKMFhqglvG3aEzBDlOAaNpSfgtk_cQ4uUtqVESNBZmD1EnozDM5vqrw1VQqDilWOyieXXfBVNJspxjQRyleqV4fsPk2lg-9H_cPsTd6G_hKcWTUkc_Wbc_D--PC2fK7Xr0-r5f261oTyXIuG9YZoorhuWYsYFJgoKyxnWLPyemeg7cqKUY5tRzuMmKI9Uo2wCqIOkjm4Ofbq6FJ2XvoQlURQMCwFbsVE3B6JQwwfo0lZ7sIYfXlKYioaVI6SplDkryekFI2Vh-j2Kn6VLjlZlZMzOTmT_1bJN3EMaEE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Johnston, C. D.</creator><creator>Cargill, P. J.</creator><creator>Hood, A. W.</creator><creator>De Moortel, I.</creator><creator>Bradshaw, S. J.</creator><creator>Vaseekar, A. C.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-3300-6041</orcidid><orcidid>https://orcid.org/0000-0003-2620-2068</orcidid><orcidid>https://orcid.org/0000-0003-4023-9887</orcidid><orcidid>https://orcid.org/0000-0001-7596-5921</orcidid><orcidid>https://orcid.org/0000-0002-1452-9330</orcidid></search><sort><creationdate>20200301</creationdate><title>Modelling the solar transition region using an adaptive conduction method</title><author>Johnston, C. D. ; Cargill, P. J. ; Hood, A. W. ; De Moortel, I. ; Bradshaw, S. J. ; Vaseekar, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-875de3c3a6c959150823af8f652c5936be0fbc955462fb4b215a4d1a78fa01b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Dimensional stability</topic><topic>Enthalpy</topic><topic>Fluid flow</topic><topic>Heat exchange</topic><topic>Heating</topic><topic>Hydrodynamic equations</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical stability</topic><topic>Robustness (mathematics)</topic><topic>Solar transition region</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, C. D.</creatorcontrib><creatorcontrib>Cargill, P. J.</creatorcontrib><creatorcontrib>Hood, A. W.</creatorcontrib><creatorcontrib>De Moortel, I.</creatorcontrib><creatorcontrib>Bradshaw, S. J.</creatorcontrib><creatorcontrib>Vaseekar, A. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, C. D.</au><au>Cargill, P. J.</au><au>Hood, A. W.</au><au>De Moortel, I.</au><au>Bradshaw, S. J.</au><au>Vaseekar, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the solar transition region using an adaptive conduction method</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>635</volume><spage>A168</spage><pages>A168-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Modelling the solar Transition Region with the use of an Adaptive Conduction (TRAC) method permits fast and accurate numerical solutions of the field-aligned hydrodynamic equations, capturing the enthalpy exchange between the corona and transition region, when the corona undergoes impulsive heating. The TRAC method eliminates the need for highly resolved numerical grids in the transition region and the commensurate very short time steps that are required for numerical stability. When employed with coarse spatial resolutions, typically achieved in multi-dimensional magnetohydrodynamic codes, the errors at peak density are less than 5% and the computation time is three orders of magnitude faster than fully resolved field-aligned models. This paper presents further examples that demonstrate the versatility and robustness of the method over a range of heating events, including impulsive and quasi-steady footpoint heating. A detailed analytical assessment of the TRAC method is also presented, showing that the approach works through all phases of an impulsive heating event because (i) the total radiative losses and (ii) the total heating when integrated over the transition region are both preserved at all temperatures under the broadening modifications of the method. The results from the numerical simulations complement this conclusion.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201936979</doi><orcidid>https://orcid.org/0000-0002-3300-6041</orcidid><orcidid>https://orcid.org/0000-0003-2620-2068</orcidid><orcidid>https://orcid.org/0000-0003-4023-9887</orcidid><orcidid>https://orcid.org/0000-0001-7596-5921</orcidid><orcidid>https://orcid.org/0000-0002-1452-9330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2020-03, Vol.635, p.A168
issn 0004-6361
1432-0746
language eng
recordid cdi_cristin_nora_10852_82980
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; NORA - Norwegian Open Research Archives; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Computational fluid dynamics
Dimensional stability
Enthalpy
Fluid flow
Heat exchange
Heating
Hydrodynamic equations
Magnetohydrodynamics
Mathematical models
Numerical stability
Robustness (mathematics)
Solar transition region
title Modelling the solar transition region using an adaptive conduction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20solar%20transition%20region%20using%20an%20adaptive%20conduction%20method&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Johnston,%20C.%20D.&rft.date=2020-03-01&rft.volume=635&rft.spage=A168&rft.pages=A168-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201936979&rft_dat=%3Cproquest_crist%3E2487115037%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487115037&rft_id=info:pmid/&rfr_iscdi=true