Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre

The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2019-04, Vol.124 (4), p.2679-2696
Hauptverfasser: Manucharyan, G. E., Isachsen, P. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2696
container_issue 4
container_start_page 2679
container_title Journal of geophysical research. Oceans
container_volume 124
creator Manucharyan, G. E.
Isachsen, P. E.
description The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is equilibrated by a balance between Ekman pumping and counteracting mesoscale eddy transport energized by baroclinic instability. However, the strongest anticyclonic flows occur over steep continental slopes, and, despite bathymetric slopes being known to influence baroclinic instability, their large‐scale impacts on BG halocline remain unexplored. Here we use an idealized eddy‐resolving BG model to demonstrate that the existence of continental slopes dramatically affects key gyre characteristics leading to deeper halocline, stronger anticyclonic circulation, and prolonged equilibration. Over continental slopes, the magnitude of the Eulerian mean circulation is dramatically reduced due to the Ekman overturning being compensated by the eddy momentum‐driven overturning. The eddy thickness flux overturning associated with lateral salt transport is also weakened over the slopes, indicating a reduction of eddy thickness diffusivity despite the isopycnal slopes being largest there. Using a theoretical halocline model, we demonstrate that it is the localized reduction in eddy diffusivity over continental slopes that is critical in explaining the halocline deepening and prolonged equilibration time. Our results emphasize the need for observational studies of eddy overturning dynamics over continental slopes and the development of slope‐aware mesoscale eddy parameterizations for low‐resolution climate models. Key Points Beaufort Gyre halocline and eddy dynamics are affected by continental slopes Eddy momentum fluxes over the slopes counteract the Ekman component of the overturning and reduce eddy diffusivity As a consequence of reduced eddy diffusivity over slopes, the halocline deepens and has a prolonged equilibration timescale
doi_str_mv 10.1029/2018JC014624
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_77599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224933476</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4587-ffaa5d6e9f03044b611837b72b0301f396636102e6533f04b345e285dd3177ab3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhgdRsFR37g24tZrbJJOlTmtrKQhV1yHTSTB1mtRkqszOR_AZfRJTquLKszkXvvNz_pNlJwheIIjFJYaomJYQUYbpXtbDiImBwALt_9Y8P8yOY1zCFAUqKBW9zJTBtnahGjD3jQbegNK71jrt2jS7b_xaR2AdmKjGL5o0B8rVYFTXHRh2Tq3sIm6X2icNRs8r5T7fP4bBvmoHrrXaGB9aMO6CPsoOjGqiPv7O_ezxZvRQTgazu_FteTUbKJoXfGCMUnnNtDCQQEorhlBBeMVxlXpkiGCMsORWs5wQA2lFaK5xkdc1QZyrivSz053uItiYbEjng5IIFjmWnOdCJOJsR6yDf9no2Mql3wSXjpIYYyoIoZwl6vxHx8cYtJHrYFcqdElLbt8t_7474WSHv9lGd_-ycjqel5gQzskX-RR-EA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224933476</pqid></control><display><type>article</type><title>Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre</title><source>NORA - Norwegian Open Research Archives</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Manucharyan, G. E. ; Isachsen, P. E.</creator><creatorcontrib>Manucharyan, G. E. ; Isachsen, P. E.</creatorcontrib><description>The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is equilibrated by a balance between Ekman pumping and counteracting mesoscale eddy transport energized by baroclinic instability. However, the strongest anticyclonic flows occur over steep continental slopes, and, despite bathymetric slopes being known to influence baroclinic instability, their large‐scale impacts on BG halocline remain unexplored. Here we use an idealized eddy‐resolving BG model to demonstrate that the existence of continental slopes dramatically affects key gyre characteristics leading to deeper halocline, stronger anticyclonic circulation, and prolonged equilibration. Over continental slopes, the magnitude of the Eulerian mean circulation is dramatically reduced due to the Ekman overturning being compensated by the eddy momentum‐driven overturning. The eddy thickness flux overturning associated with lateral salt transport is also weakened over the slopes, indicating a reduction of eddy thickness diffusivity despite the isopycnal slopes being largest there. Using a theoretical halocline model, we demonstrate that it is the localized reduction in eddy diffusivity over continental slopes that is critical in explaining the halocline deepening and prolonged equilibration time. Our results emphasize the need for observational studies of eddy overturning dynamics over continental slopes and the development of slope‐aware mesoscale eddy parameterizations for low‐resolution climate models. Key Points Beaufort Gyre halocline and eddy dynamics are affected by continental slopes Eddy momentum fluxes over the slopes counteract the Ekman component of the overturning and reduce eddy diffusivity As a consequence of reduced eddy diffusivity over slopes, the halocline deepens and has a prolonged equilibration timescale</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2018JC014624</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Activation ; Anticyclonic circulation ; Balancing ; Baroclinic flow ; Baroclinic instability ; Beaufort Gyre ; Climate models ; Continental slope ; continental slopes ; Diffusion coefficients ; Diffusivity ; Dynamics ; Eddy diffusion ; Eddy diffusivity ; eddy‐mean flow interactions ; Ekman pumping ; Freshwater ; freshwater content ; Geophysics ; Halocline ; Inland water environment ; Instability ; mesoscale eddies ; Momentum ; Observational studies ; Ocean circulation ; Ocean currents ; Reduction ; Salt advection ; Slope ; Slope stability ; Slopes ; Thickness ; Transport ; Vortices</subject><ispartof>Journal of geophysical research. Oceans, 2019-04, Vol.124 (4), p.2679-2696</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4587-ffaa5d6e9f03044b611837b72b0301f396636102e6533f04b345e285dd3177ab3</citedby><cites>FETCH-LOGICAL-a4587-ffaa5d6e9f03044b611837b72b0301f396636102e6533f04b345e285dd3177ab3</cites><orcidid>0000-0001-7959-2675 ; 0000-0003-1249-3052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JC014624$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JC014624$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,26567,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Manucharyan, G. E.</creatorcontrib><creatorcontrib>Isachsen, P. E.</creatorcontrib><title>Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre</title><title>Journal of geophysical research. Oceans</title><description>The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is equilibrated by a balance between Ekman pumping and counteracting mesoscale eddy transport energized by baroclinic instability. However, the strongest anticyclonic flows occur over steep continental slopes, and, despite bathymetric slopes being known to influence baroclinic instability, their large‐scale impacts on BG halocline remain unexplored. Here we use an idealized eddy‐resolving BG model to demonstrate that the existence of continental slopes dramatically affects key gyre characteristics leading to deeper halocline, stronger anticyclonic circulation, and prolonged equilibration. Over continental slopes, the magnitude of the Eulerian mean circulation is dramatically reduced due to the Ekman overturning being compensated by the eddy momentum‐driven overturning. The eddy thickness flux overturning associated with lateral salt transport is also weakened over the slopes, indicating a reduction of eddy thickness diffusivity despite the isopycnal slopes being largest there. Using a theoretical halocline model, we demonstrate that it is the localized reduction in eddy diffusivity over continental slopes that is critical in explaining the halocline deepening and prolonged equilibration time. Our results emphasize the need for observational studies of eddy overturning dynamics over continental slopes and the development of slope‐aware mesoscale eddy parameterizations for low‐resolution climate models. Key Points Beaufort Gyre halocline and eddy dynamics are affected by continental slopes Eddy momentum fluxes over the slopes counteract the Ekman component of the overturning and reduce eddy diffusivity As a consequence of reduced eddy diffusivity over slopes, the halocline deepens and has a prolonged equilibration timescale</description><subject>Activation</subject><subject>Anticyclonic circulation</subject><subject>Balancing</subject><subject>Baroclinic flow</subject><subject>Baroclinic instability</subject><subject>Beaufort Gyre</subject><subject>Climate models</subject><subject>Continental slope</subject><subject>continental slopes</subject><subject>Diffusion coefficients</subject><subject>Diffusivity</subject><subject>Dynamics</subject><subject>Eddy diffusion</subject><subject>Eddy diffusivity</subject><subject>eddy‐mean flow interactions</subject><subject>Ekman pumping</subject><subject>Freshwater</subject><subject>freshwater content</subject><subject>Geophysics</subject><subject>Halocline</subject><subject>Inland water environment</subject><subject>Instability</subject><subject>mesoscale eddies</subject><subject>Momentum</subject><subject>Observational studies</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Reduction</subject><subject>Salt advection</subject><subject>Slope</subject><subject>Slope stability</subject><subject>Slopes</subject><subject>Thickness</subject><subject>Transport</subject><subject>Vortices</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kMtKAzEUhgdRsFR37g24tZrbJJOlTmtrKQhV1yHTSTB1mtRkqszOR_AZfRJTquLKszkXvvNz_pNlJwheIIjFJYaomJYQUYbpXtbDiImBwALt_9Y8P8yOY1zCFAUqKBW9zJTBtnahGjD3jQbegNK71jrt2jS7b_xaR2AdmKjGL5o0B8rVYFTXHRh2Tq3sIm6X2icNRs8r5T7fP4bBvmoHrrXaGB9aMO6CPsoOjGqiPv7O_ezxZvRQTgazu_FteTUbKJoXfGCMUnnNtDCQQEorhlBBeMVxlXpkiGCMsORWs5wQA2lFaK5xkdc1QZyrivSz053uItiYbEjng5IIFjmWnOdCJOJsR6yDf9no2Mql3wSXjpIYYyoIoZwl6vxHx8cYtJHrYFcqdElLbt8t_7474WSHv9lGd_-ycjqel5gQzskX-RR-EA</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Manucharyan, G. E.</creator><creator>Isachsen, P. E.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-7959-2675</orcidid><orcidid>https://orcid.org/0000-0003-1249-3052</orcidid></search><sort><creationdate>201904</creationdate><title>Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre</title><author>Manucharyan, G. E. ; Isachsen, P. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4587-ffaa5d6e9f03044b611837b72b0301f396636102e6533f04b345e285dd3177ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Anticyclonic circulation</topic><topic>Balancing</topic><topic>Baroclinic flow</topic><topic>Baroclinic instability</topic><topic>Beaufort Gyre</topic><topic>Climate models</topic><topic>Continental slope</topic><topic>continental slopes</topic><topic>Diffusion coefficients</topic><topic>Diffusivity</topic><topic>Dynamics</topic><topic>Eddy diffusion</topic><topic>Eddy diffusivity</topic><topic>eddy‐mean flow interactions</topic><topic>Ekman pumping</topic><topic>Freshwater</topic><topic>freshwater content</topic><topic>Geophysics</topic><topic>Halocline</topic><topic>Inland water environment</topic><topic>Instability</topic><topic>mesoscale eddies</topic><topic>Momentum</topic><topic>Observational studies</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Reduction</topic><topic>Salt advection</topic><topic>Slope</topic><topic>Slope stability</topic><topic>Slopes</topic><topic>Thickness</topic><topic>Transport</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manucharyan, G. E.</creatorcontrib><creatorcontrib>Isachsen, P. E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manucharyan, G. E.</au><au>Isachsen, P. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><date>2019-04</date><risdate>2019</risdate><volume>124</volume><issue>4</issue><spage>2679</spage><epage>2696</epage><pages>2679-2696</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is equilibrated by a balance between Ekman pumping and counteracting mesoscale eddy transport energized by baroclinic instability. However, the strongest anticyclonic flows occur over steep continental slopes, and, despite bathymetric slopes being known to influence baroclinic instability, their large‐scale impacts on BG halocline remain unexplored. Here we use an idealized eddy‐resolving BG model to demonstrate that the existence of continental slopes dramatically affects key gyre characteristics leading to deeper halocline, stronger anticyclonic circulation, and prolonged equilibration. Over continental slopes, the magnitude of the Eulerian mean circulation is dramatically reduced due to the Ekman overturning being compensated by the eddy momentum‐driven overturning. The eddy thickness flux overturning associated with lateral salt transport is also weakened over the slopes, indicating a reduction of eddy thickness diffusivity despite the isopycnal slopes being largest there. Using a theoretical halocline model, we demonstrate that it is the localized reduction in eddy diffusivity over continental slopes that is critical in explaining the halocline deepening and prolonged equilibration time. Our results emphasize the need for observational studies of eddy overturning dynamics over continental slopes and the development of slope‐aware mesoscale eddy parameterizations for low‐resolution climate models. Key Points Beaufort Gyre halocline and eddy dynamics are affected by continental slopes Eddy momentum fluxes over the slopes counteract the Ekman component of the overturning and reduce eddy diffusivity As a consequence of reduced eddy diffusivity over slopes, the halocline deepens and has a prolonged equilibration timescale</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JC014624</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7959-2675</orcidid><orcidid>https://orcid.org/0000-0003-1249-3052</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2019-04, Vol.124 (4), p.2679-2696
issn 2169-9275
2169-9291
language eng
recordid cdi_cristin_nora_10852_77599
source NORA - Norwegian Open Research Archives; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Activation
Anticyclonic circulation
Balancing
Baroclinic flow
Baroclinic instability
Beaufort Gyre
Climate models
Continental slope
continental slopes
Diffusion coefficients
Diffusivity
Dynamics
Eddy diffusion
Eddy diffusivity
eddy‐mean flow interactions
Ekman pumping
Freshwater
freshwater content
Geophysics
Halocline
Inland water environment
Instability
mesoscale eddies
Momentum
Observational studies
Ocean circulation
Ocean currents
Reduction
Salt advection
Slope
Slope stability
Slopes
Thickness
Transport
Vortices
title Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman‐Driven Beaufort Gyre
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Role%20of%20Continental%20Slopes%20in%20Halocline%20and%20Eddy%20Dynamics%20of%20the%20Ekman%E2%80%90Driven%20Beaufort%20Gyre&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Manucharyan,%20G.%20E.&rft.date=2019-04&rft.volume=124&rft.issue=4&rft.spage=2679&rft.epage=2696&rft.pages=2679-2696&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1029/2018JC014624&rft_dat=%3Cproquest_crist%3E2224933476%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224933476&rft_id=info:pmid/&rfr_iscdi=true