Bayesian inference of atomistic structure in functional materials

Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2019-03, Vol.5 (1), Article 35
Hauptverfasser: Todorović, Milica, Gutmann, Michael U., Corander, Jukka, Rinke, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 5
creator Todorović, Milica
Gutmann, Michael U.
Corander, Jukka
Rinke, Patrick
description Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a ‘building block’-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C 60 on the (101) surface of TiO 2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.
doi_str_mv 10.1038/s41524-019-0175-2
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_75551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193647088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-e9614940616a9fed4eb125d658f8b616f7958aebcda06c5720eb2042bf3ed8bc3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gCcXPK8m2SSbHGvRKhS86DlksxNJabM1yR76701ZRS8ehhmG7z0eD6Frgu8IbuR9YoRTVmOiyrS8pmdoRjFv60YJfP7nvkSLlLYYF5JKyvAMLR_MEZI3ofLBQYRgoRpcZfKw9yl7W6UcR5vHCAWo3Bhs9kMwu2pvMkRvdukKXbiyYPG95-j96fFt9VxvXtcvq-WmtoypXIMShCmGBRFGOegZdITyXnDpZFeerlVcGuhsb7CwvKUYOooZ7VwDvexsM0c3k6-Np2RBhyEaTbDkVLecc1KI24k4xOFzhJT1dhhjCZs0JaoRrMVSFor8-AwpRXD6EP3exGPx0qc69VSnLiXpU52aFg2dNKmw4QPir_P_oi_b83Y4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193647088</pqid></control><display><type>article</type><title>Bayesian inference of atomistic structure in functional materials</title><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Todorović, Milica ; Gutmann, Michael U. ; Corander, Jukka ; Rinke, Patrick</creator><creatorcontrib>Todorović, Milica ; Gutmann, Michael U. ; Corander, Jukka ; Rinke, Patrick</creatorcontrib><description>Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a ‘building block’-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C 60 on the (101) surface of TiO 2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0175-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1035 ; 639/638/542 ; 639/638/563 ; 639/766/25 ; Adsorbates ; Adsorption ; Anatase ; Bayesian analysis ; Buckminsterfullerene ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computer simulation ; Configurations ; Feasibility studies ; Fullerenes ; Functional materials ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Optimization ; Quantum mechanics ; Statistical inference ; Surface chemistry ; Theoretical ; Titanium dioxide</subject><ispartof>npj computational materials, 2019-03, Vol.5 (1), Article 35</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-e9614940616a9fed4eb125d658f8b616f7958aebcda06c5720eb2042bf3ed8bc3</citedby><cites>FETCH-LOGICAL-c449t-e9614940616a9fed4eb125d658f8b616f7958aebcda06c5720eb2042bf3ed8bc3</cites><orcidid>0000-0003-0028-0105 ; 0000-0003-1898-723X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-019-0175-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-019-0175-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,26546,27903,27904,41099,42168,51554</link.rule.ids></links><search><creatorcontrib>Todorović, Milica</creatorcontrib><creatorcontrib>Gutmann, Michael U.</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Rinke, Patrick</creatorcontrib><title>Bayesian inference of atomistic structure in functional materials</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a ‘building block’-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C 60 on the (101) surface of TiO 2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.</description><subject>639/301/1034/1035</subject><subject>639/638/542</subject><subject>639/638/563</subject><subject>639/766/25</subject><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Anatase</subject><subject>Bayesian analysis</subject><subject>Buckminsterfullerene</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Feasibility studies</subject><subject>Fullerenes</subject><subject>Functional materials</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Optimization</subject><subject>Quantum mechanics</subject><subject>Statistical inference</subject><subject>Surface chemistry</subject><subject>Theoretical</subject><subject>Titanium dioxide</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><recordid>eNp1kEFLAzEQhYMoWGp_gCcXPK8m2SSbHGvRKhS86DlksxNJabM1yR76701ZRS8ehhmG7z0eD6Frgu8IbuR9YoRTVmOiyrS8pmdoRjFv60YJfP7nvkSLlLYYF5JKyvAMLR_MEZI3ofLBQYRgoRpcZfKw9yl7W6UcR5vHCAWo3Bhs9kMwu2pvMkRvdukKXbiyYPG95-j96fFt9VxvXtcvq-WmtoypXIMShCmGBRFGOegZdITyXnDpZFeerlVcGuhsb7CwvKUYOooZ7VwDvexsM0c3k6-Np2RBhyEaTbDkVLecc1KI24k4xOFzhJT1dhhjCZs0JaoRrMVSFor8-AwpRXD6EP3exGPx0qc69VSnLiXpU52aFg2dNKmw4QPir_P_oi_b83Y4</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Todorović, Milica</creator><creator>Gutmann, Michael U.</creator><creator>Corander, Jukka</creator><creator>Rinke, Patrick</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-0028-0105</orcidid><orcidid>https://orcid.org/0000-0003-1898-723X</orcidid></search><sort><creationdate>20190318</creationdate><title>Bayesian inference of atomistic structure in functional materials</title><author>Todorović, Milica ; Gutmann, Michael U. ; Corander, Jukka ; Rinke, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-e9614940616a9fed4eb125d658f8b616f7958aebcda06c5720eb2042bf3ed8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1034/1035</topic><topic>639/638/542</topic><topic>639/638/563</topic><topic>639/766/25</topic><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Anatase</topic><topic>Bayesian analysis</topic><topic>Buckminsterfullerene</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Feasibility studies</topic><topic>Fullerenes</topic><topic>Functional materials</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Optimization</topic><topic>Quantum mechanics</topic><topic>Statistical inference</topic><topic>Surface chemistry</topic><topic>Theoretical</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Todorović, Milica</creatorcontrib><creatorcontrib>Gutmann, Michael U.</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Rinke, Patrick</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Todorović, Milica</au><au>Gutmann, Michael U.</au><au>Corander, Jukka</au><au>Rinke, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference of atomistic structure in functional materials</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-03-18</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>35</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Tailoring the functional properties of advanced organic/inorganic heterogeneous devices to their intended technological applications requires knowledge and control of the microscopic structure inside the device. Atomistic quantum mechanical simulation methods deliver accurate energies and properties for individual configurations, however, finding the most favourable configurations remains computationally prohibitive. We propose a ‘building block’-based Bayesian Optimisation Structure Search (BOSS) approach for addressing extended organic/inorganic interface problems and demonstrate its feasibility in a molecular surface adsorption study. In BOSS, a Bayesian model identifies material energy landscapes in an accelerated fashion from atomistic configurations sampled during active learning. This allowed us to identify several most favourable molecular adsorption configurations for C 60 on the (101) surface of TiO 2 anatase and clarify the key molecule-surface interactions governing structural assembly. Inferred structures were in good agreement with detailed experimental images of this surface adsorbate, demonstrating good predictive power of BOSS and opening the route towards large-scale surface adsorption studies of molecular aggregates and films.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0175-2</doi><orcidid>https://orcid.org/0000-0003-0028-0105</orcidid><orcidid>https://orcid.org/0000-0003-1898-723X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2019-03, Vol.5 (1), Article 35
issn 2057-3960
2057-3960
language eng
recordid cdi_cristin_nora_10852_75551
source NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/301/1034/1035
639/638/542
639/638/563
639/766/25
Adsorbates
Adsorption
Anatase
Bayesian analysis
Buckminsterfullerene
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Computer simulation
Configurations
Feasibility studies
Fullerenes
Functional materials
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Optimization
Quantum mechanics
Statistical inference
Surface chemistry
Theoretical
Titanium dioxide
title Bayesian inference of atomistic structure in functional materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20of%20atomistic%20structure%20in%20functional%20materials&rft.jtitle=npj%20computational%20materials&rft.au=Todorovi%C4%87,%20Milica&rft.date=2019-03-18&rft.volume=5&rft.issue=1&rft.artnum=35&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0175-2&rft_dat=%3Cproquest_crist%3E2193647088%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193647088&rft_id=info:pmid/&rfr_iscdi=true