ELFI: Engine for Likelihood-Free Inference
Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implement...
Gespeichert in:
Veröffentlicht in: | Journal of machine learning research 2018-01 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng ; nor |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of machine learning research |
container_volume | |
creator | Lintusaari, Jarno Vuollekoski, Henri Kangasraasio, Antti Skyten, Kusti Jarvenpaa, Marko Marttinen, Pekka Gutmann, Michael U Vehtari, Aki Corander, Jukka Kaski, Samuel |
description | Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features. |
format | Article |
fullrecord | <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10852_72814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_72814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-72d3d8000951f895ccc8f1fab2597c34ba5355debb9efecd1cca117660680d813</originalsourceid><addsrcrecordid>eNotzMFKxDAQgOEgLriu-wz2LAQySadJvMnSaqHgRc8lnUw0uqSQ7vsjqKf_O_1XYg9ojLReu-tfa9m2Bm_E7bZ9KQUWdbcXD_00jI9NXz5y4SattZnyN5_z57pGOVTmZiyJKxfiO7FL4bzx8b8H8T70b6cXOb0-j6enSRJYf5FWRxOdUsojJOeRiFyCFBaN3pJpl4AGMfKyeE5MEYgCgO061TkVHZiDuP_7Us3bJZe5rDXMoBzq2WoHrfkBUhg7PQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ELFI: Engine for Likelihood-Free Inference</title><source>NORA - Norwegian Open Research Archives</source><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</creator><creatorcontrib>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</creatorcontrib><description>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><language>eng ; nor</language><ispartof>Journal of machine learning research, 2018-01</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26565</link.rule.ids></links><search><creatorcontrib>Lintusaari, Jarno</creatorcontrib><creatorcontrib>Vuollekoski, Henri</creatorcontrib><creatorcontrib>Kangasraasio, Antti</creatorcontrib><creatorcontrib>Skyten, Kusti</creatorcontrib><creatorcontrib>Jarvenpaa, Marko</creatorcontrib><creatorcontrib>Marttinen, Pekka</creatorcontrib><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><title>ELFI: Engine for Likelihood-Free Inference</title><title>Journal of machine learning research</title><description>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNotzMFKxDAQgOEgLriu-wz2LAQySadJvMnSaqHgRc8lnUw0uqSQ7vsjqKf_O_1XYg9ojLReu-tfa9m2Bm_E7bZ9KQUWdbcXD_00jI9NXz5y4SattZnyN5_z57pGOVTmZiyJKxfiO7FL4bzx8b8H8T70b6cXOb0-j6enSRJYf5FWRxOdUsojJOeRiFyCFBaN3pJpl4AGMfKyeE5MEYgCgO061TkVHZiDuP_7Us3bJZe5rDXMoBzq2WoHrfkBUhg7PQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lintusaari, Jarno</creator><creator>Vuollekoski, Henri</creator><creator>Kangasraasio, Antti</creator><creator>Skyten, Kusti</creator><creator>Jarvenpaa, Marko</creator><creator>Marttinen, Pekka</creator><creator>Gutmann, Michael U</creator><creator>Vehtari, Aki</creator><creator>Corander, Jukka</creator><creator>Kaski, Samuel</creator><scope>3HK</scope></search><sort><creationdate>20180101</creationdate><title>ELFI: Engine for Likelihood-Free Inference</title><author>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-72d3d8000951f895ccc8f1fab2597c34ba5355debb9efecd1cca117660680d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; nor</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lintusaari, Jarno</creatorcontrib><creatorcontrib>Vuollekoski, Henri</creatorcontrib><creatorcontrib>Kangasraasio, Antti</creatorcontrib><creatorcontrib>Skyten, Kusti</creatorcontrib><creatorcontrib>Jarvenpaa, Marko</creatorcontrib><creatorcontrib>Marttinen, Pekka</creatorcontrib><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lintusaari, Jarno</au><au>Vuollekoski, Henri</au><au>Kangasraasio, Antti</au><au>Skyten, Kusti</au><au>Jarvenpaa, Marko</au><au>Marttinen, Pekka</au><au>Gutmann, Michael U</au><au>Vehtari, Aki</au><au>Corander, Jukka</au><au>Kaski, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELFI: Engine for Likelihood-Free Inference</atitle><jtitle>Journal of machine learning research</jtitle><date>2018-01-01</date><risdate>2018</risdate><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-4435 |
ispartof | Journal of machine learning research, 2018-01 |
issn | 1532-4435 1533-7928 |
language | eng ; nor |
recordid | cdi_cristin_nora_10852_72814 |
source | NORA - Norwegian Open Research Archives; ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals |
title | ELFI: Engine for Likelihood-Free Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELFI:%20Engine%20for%20Likelihood-Free%20Inference&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Lintusaari,%20Jarno&rft.date=2018-01-01&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Ccristin%3E10852_72814%3C/cristin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |