ELFI: Engine for Likelihood-Free Inference

Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2018-01
Hauptverfasser: Lintusaari, Jarno, Vuollekoski, Henri, Kangasraasio, Antti, Skyten, Kusti, Jarvenpaa, Marko, Marttinen, Pekka, Gutmann, Michael U, Vehtari, Aki, Corander, Jukka, Kaski, Samuel
Format: Artikel
Sprache:eng ; nor
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of machine learning research
container_volume
creator Lintusaari, Jarno
Vuollekoski, Henri
Kangasraasio, Antti
Skyten, Kusti
Jarvenpaa, Marko
Marttinen, Pekka
Gutmann, Michael U
Vehtari, Aki
Corander, Jukka
Kaski, Samuel
description Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.
format Article
fullrecord <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10852_72814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_72814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-72d3d8000951f895ccc8f1fab2597c34ba5355debb9efecd1cca117660680d813</originalsourceid><addsrcrecordid>eNotzMFKxDAQgOEgLriu-wz2LAQySadJvMnSaqHgRc8lnUw0uqSQ7vsjqKf_O_1XYg9ojLReu-tfa9m2Bm_E7bZ9KQUWdbcXD_00jI9NXz5y4SattZnyN5_z57pGOVTmZiyJKxfiO7FL4bzx8b8H8T70b6cXOb0-j6enSRJYf5FWRxOdUsojJOeRiFyCFBaN3pJpl4AGMfKyeE5MEYgCgO061TkVHZiDuP_7Us3bJZe5rDXMoBzq2WoHrfkBUhg7PQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ELFI: Engine for Likelihood-Free Inference</title><source>NORA - Norwegian Open Research Archives</source><source>ACM Digital Library Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</creator><creatorcontrib>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</creatorcontrib><description>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><language>eng ; nor</language><ispartof>Journal of machine learning research, 2018-01</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26565</link.rule.ids></links><search><creatorcontrib>Lintusaari, Jarno</creatorcontrib><creatorcontrib>Vuollekoski, Henri</creatorcontrib><creatorcontrib>Kangasraasio, Antti</creatorcontrib><creatorcontrib>Skyten, Kusti</creatorcontrib><creatorcontrib>Jarvenpaa, Marko</creatorcontrib><creatorcontrib>Marttinen, Pekka</creatorcontrib><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><title>ELFI: Engine for Likelihood-Free Inference</title><title>Journal of machine learning research</title><description>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNotzMFKxDAQgOEgLriu-wz2LAQySadJvMnSaqHgRc8lnUw0uqSQ7vsjqKf_O_1XYg9ojLReu-tfa9m2Bm_E7bZ9KQUWdbcXD_00jI9NXz5y4SattZnyN5_z57pGOVTmZiyJKxfiO7FL4bzx8b8H8T70b6cXOb0-j6enSRJYf5FWRxOdUsojJOeRiFyCFBaN3pJpl4AGMfKyeE5MEYgCgO061TkVHZiDuP_7Us3bJZe5rDXMoBzq2WoHrfkBUhg7PQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lintusaari, Jarno</creator><creator>Vuollekoski, Henri</creator><creator>Kangasraasio, Antti</creator><creator>Skyten, Kusti</creator><creator>Jarvenpaa, Marko</creator><creator>Marttinen, Pekka</creator><creator>Gutmann, Michael U</creator><creator>Vehtari, Aki</creator><creator>Corander, Jukka</creator><creator>Kaski, Samuel</creator><scope>3HK</scope></search><sort><creationdate>20180101</creationdate><title>ELFI: Engine for Likelihood-Free Inference</title><author>Lintusaari, Jarno ; Vuollekoski, Henri ; Kangasraasio, Antti ; Skyten, Kusti ; Jarvenpaa, Marko ; Marttinen, Pekka ; Gutmann, Michael U ; Vehtari, Aki ; Corander, Jukka ; Kaski, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-72d3d8000951f895ccc8f1fab2597c34ba5355debb9efecd1cca117660680d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; nor</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lintusaari, Jarno</creatorcontrib><creatorcontrib>Vuollekoski, Henri</creatorcontrib><creatorcontrib>Kangasraasio, Antti</creatorcontrib><creatorcontrib>Skyten, Kusti</creatorcontrib><creatorcontrib>Jarvenpaa, Marko</creatorcontrib><creatorcontrib>Marttinen, Pekka</creatorcontrib><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Corander, Jukka</creatorcontrib><creatorcontrib>Kaski, Samuel</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lintusaari, Jarno</au><au>Vuollekoski, Henri</au><au>Kangasraasio, Antti</au><au>Skyten, Kusti</au><au>Jarvenpaa, Marko</au><au>Marttinen, Pekka</au><au>Gutmann, Michael U</au><au>Vehtari, Aki</au><au>Corander, Jukka</au><au>Kaski, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ELFI: Engine for Likelihood-Free Inference</atitle><jtitle>Journal of machine learning research</jtitle><date>2018-01-01</date><risdate>2018</risdate><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>Engine for Likelihood-Free Inference (ELFI) is a Python software library for performinglikelihood-free inference (LFI). ELFI provides a convenient syntax for arranging componentsin LFI, such as priors, simulators, summaries or distances, to a network called ELFI graph.The components can be implemented in a wide variety of languages. The stand-alone ELFIgraph can be used with any of the available inference methods without modifications. Acentral method implemented in ELFI is Bayesian Optimization for Likelihood-Free Inference(BOLFI), which has recently been shown to accelerate likelihood-free inference up to severalorders of magnitude by surrogate-modelling the distance. ELFI also has an inbuilt supportfor output data storing for reuse and analysis, and supports parallelization of computationfrom multiple cores up to a cluster environment. ELFI is designed to be extensible andprovides interfaces for widening its functionality. This makes the adding of new inferencemethods to ELFI straightforward and automatically compatible with the inbuilt features.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-4435
ispartof Journal of machine learning research, 2018-01
issn 1532-4435
1533-7928
language eng ; nor
recordid cdi_cristin_nora_10852_72814
source NORA - Norwegian Open Research Archives; ACM Digital Library Complete; EZB-FREE-00999 freely available EZB journals
title ELFI: Engine for Likelihood-Free Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ELFI:%20Engine%20for%20Likelihood-Free%20Inference&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Lintusaari,%20Jarno&rft.date=2018-01-01&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Ccristin%3E10852_72814%3C/cristin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true