Modeling and Simulation of Spark Streaming
As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make effi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 413 |
---|---|
container_issue | |
container_start_page | 407 |
container_title | |
container_volume | |
creator | Lin, Jia-Chun Lee, Ming-Chang Yu, Ingrid Chieh Johnsen, Einar Broch |
description | As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios. |
doi_str_mv | 10.1109/AINA.2018.00068 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_71512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8432270</ieee_id><sourcerecordid>8432270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-77bfc4ec3344197a9e0f36c2fb0865caeae769a39ae591abcbd480945d3855843</originalsourceid><addsrcrecordid>eNotzD1PwzAUhWGDQKKUzgwMZEZKudf29cdYVQUqFRgKElt04zjIkCZVEgb-PZXKdJbnvEJcI8wRwd8v1i-LuQR0cwAw7kTMvHVIyhmJXqtTMZFKyZwMuTMxQSLItaaPC3E5DF8AymhLE3H33FWxSe1nxm2VbdPup-ExdW3W1dl2z_13th37yLuDuBLnNTdDnP3vVLw_rN6WT_nm9XG9XGzygN6PubVlHXQMSmmN3rKPUCsTZF2CMxQ4crTGs_IcySOXoay0A6-pUo7IaTUVt8du6NMwprZou54LBEeysEgoD-LmKFKMsdj3acf9b3G4SmlB_QG3s0yD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling and Simulation of Spark Streaming</title><source>NORA - Norwegian Open Research Archives</source><creator>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</creator><creatorcontrib>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</creatorcontrib><description>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</description><identifier>ISSN: 1550-445X</identifier><identifier>EISSN: 2332-5658</identifier><identifier>EISBN: 9781538621943</identifier><identifier>EISBN: 9781538621950</identifier><identifier>EISBN: 1538621940</identifier><identifier>EISBN: 1538621959</identifier><identifier>DOI: 10.1109/AINA.2018.00068</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Informatics ; modeling ; Object oriented modeling ; Predictive models ; Real-time systems ; Simulation ; Spark Streaming ; Sparks</subject><ispartof>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 2018, p.407-413</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/71512$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Jia-Chun</creatorcontrib><creatorcontrib>Lee, Ming-Chang</creatorcontrib><creatorcontrib>Yu, Ingrid Chieh</creatorcontrib><creatorcontrib>Johnsen, Einar Broch</creatorcontrib><title>Modeling and Simulation of Spark Streaming</title><title>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)</title><addtitle>AINA</addtitle><description>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</description><subject>Data models</subject><subject>Informatics</subject><subject>modeling</subject><subject>Object oriented modeling</subject><subject>Predictive models</subject><subject>Real-time systems</subject><subject>Simulation</subject><subject>Spark Streaming</subject><subject>Sparks</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9781538621943</isbn><isbn>9781538621950</isbn><isbn>1538621940</isbn><isbn>1538621959</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>3HK</sourceid><recordid>eNotzD1PwzAUhWGDQKKUzgwMZEZKudf29cdYVQUqFRgKElt04zjIkCZVEgb-PZXKdJbnvEJcI8wRwd8v1i-LuQR0cwAw7kTMvHVIyhmJXqtTMZFKyZwMuTMxQSLItaaPC3E5DF8AymhLE3H33FWxSe1nxm2VbdPup-ExdW3W1dl2z_13th37yLuDuBLnNTdDnP3vVLw_rN6WT_nm9XG9XGzygN6PubVlHXQMSmmN3rKPUCsTZF2CMxQ4crTGs_IcySOXoay0A6-pUo7IaTUVt8du6NMwprZou54LBEeysEgoD-LmKFKMsdj3acf9b3G4SmlB_QG3s0yD</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lin, Jia-Chun</creator><creator>Lee, Ming-Chang</creator><creator>Yu, Ingrid Chieh</creator><creator>Johnsen, Einar Broch</creator><general>IEEE</general><general>IEEE conference proceedings</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>3HK</scope></search><sort><creationdate>20180101</creationdate><title>Modeling and Simulation of Spark Streaming</title><author>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-77bfc4ec3344197a9e0f36c2fb0865caeae769a39ae591abcbd480945d3855843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data models</topic><topic>Informatics</topic><topic>modeling</topic><topic>Object oriented modeling</topic><topic>Predictive models</topic><topic>Real-time systems</topic><topic>Simulation</topic><topic>Spark Streaming</topic><topic>Sparks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jia-Chun</creatorcontrib><creatorcontrib>Lee, Ming-Chang</creatorcontrib><creatorcontrib>Yu, Ingrid Chieh</creatorcontrib><creatorcontrib>Johnsen, Einar Broch</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Jia-Chun</au><au>Lee, Ming-Chang</au><au>Yu, Ingrid Chieh</au><au>Johnsen, Einar Broch</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and Simulation of Spark Streaming</atitle><btitle>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)</btitle><stitle>AINA</stitle><date>2018-01-01</date><risdate>2018</risdate><spage>407</spage><epage>413</epage><pages>407-413</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><eisbn>9781538621943</eisbn><eisbn>9781538621950</eisbn><eisbn>1538621940</eisbn><eisbn>1538621959</eisbn><coden>IEEPAD</coden><abstract>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2018.00068</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-445X |
ispartof | 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 2018, p.407-413 |
issn | 1550-445X 2332-5658 |
language | eng |
recordid | cdi_cristin_nora_10852_71512 |
source | NORA - Norwegian Open Research Archives |
subjects | Data models Informatics modeling Object oriented modeling Predictive models Real-time systems Simulation Spark Streaming Sparks |
title | Modeling and Simulation of Spark Streaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20Simulation%20of%20Spark%20Streaming&rft.btitle=2018%20IEEE%2032nd%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA)&rft.au=Lin,%20Jia-Chun&rft.date=2018-01-01&rft.spage=407&rft.epage=413&rft.pages=407-413&rft.issn=1550-445X&rft.eissn=2332-5658&rft.coden=IEEPAD&rft_id=info:doi/10.1109/AINA.2018.00068&rft_dat=%3Cieee_3HK%3E8432270%3C/ieee_3HK%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781538621943&rft.eisbn_list=9781538621950&rft.eisbn_list=1538621940&rft.eisbn_list=1538621959&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8432270&rfr_iscdi=true |