Modeling and Simulation of Spark Streaming

As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Jia-Chun, Lee, Ming-Chang, Yu, Ingrid Chieh, Johnsen, Einar Broch
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 413
container_issue
container_start_page 407
container_title
container_volume
creator Lin, Jia-Chun
Lee, Ming-Chang
Yu, Ingrid Chieh
Johnsen, Einar Broch
description As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.
doi_str_mv 10.1109/AINA.2018.00068
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_71512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8432270</ieee_id><sourcerecordid>8432270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-77bfc4ec3344197a9e0f36c2fb0865caeae769a39ae591abcbd480945d3855843</originalsourceid><addsrcrecordid>eNotzD1PwzAUhWGDQKKUzgwMZEZKudf29cdYVQUqFRgKElt04zjIkCZVEgb-PZXKdJbnvEJcI8wRwd8v1i-LuQR0cwAw7kTMvHVIyhmJXqtTMZFKyZwMuTMxQSLItaaPC3E5DF8AymhLE3H33FWxSe1nxm2VbdPup-ExdW3W1dl2z_13th37yLuDuBLnNTdDnP3vVLw_rN6WT_nm9XG9XGzygN6PubVlHXQMSmmN3rKPUCsTZF2CMxQ4crTGs_IcySOXoay0A6-pUo7IaTUVt8du6NMwprZou54LBEeysEgoD-LmKFKMsdj3acf9b3G4SmlB_QG3s0yD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling and Simulation of Spark Streaming</title><source>NORA - Norwegian Open Research Archives</source><creator>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</creator><creatorcontrib>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</creatorcontrib><description>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</description><identifier>ISSN: 1550-445X</identifier><identifier>EISSN: 2332-5658</identifier><identifier>EISBN: 9781538621943</identifier><identifier>EISBN: 9781538621950</identifier><identifier>EISBN: 1538621940</identifier><identifier>EISBN: 1538621959</identifier><identifier>DOI: 10.1109/AINA.2018.00068</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Informatics ; modeling ; Object oriented modeling ; Predictive models ; Real-time systems ; Simulation ; Spark Streaming ; Sparks</subject><ispartof>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 2018, p.407-413</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/71512$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Jia-Chun</creatorcontrib><creatorcontrib>Lee, Ming-Chang</creatorcontrib><creatorcontrib>Yu, Ingrid Chieh</creatorcontrib><creatorcontrib>Johnsen, Einar Broch</creatorcontrib><title>Modeling and Simulation of Spark Streaming</title><title>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)</title><addtitle>AINA</addtitle><description>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</description><subject>Data models</subject><subject>Informatics</subject><subject>modeling</subject><subject>Object oriented modeling</subject><subject>Predictive models</subject><subject>Real-time systems</subject><subject>Simulation</subject><subject>Spark Streaming</subject><subject>Sparks</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9781538621943</isbn><isbn>9781538621950</isbn><isbn>1538621940</isbn><isbn>1538621959</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>3HK</sourceid><recordid>eNotzD1PwzAUhWGDQKKUzgwMZEZKudf29cdYVQUqFRgKElt04zjIkCZVEgb-PZXKdJbnvEJcI8wRwd8v1i-LuQR0cwAw7kTMvHVIyhmJXqtTMZFKyZwMuTMxQSLItaaPC3E5DF8AymhLE3H33FWxSe1nxm2VbdPup-ExdW3W1dl2z_13th37yLuDuBLnNTdDnP3vVLw_rN6WT_nm9XG9XGzygN6PubVlHXQMSmmN3rKPUCsTZF2CMxQ4crTGs_IcySOXoay0A6-pUo7IaTUVt8du6NMwprZou54LBEeysEgoD-LmKFKMsdj3acf9b3G4SmlB_QG3s0yD</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lin, Jia-Chun</creator><creator>Lee, Ming-Chang</creator><creator>Yu, Ingrid Chieh</creator><creator>Johnsen, Einar Broch</creator><general>IEEE</general><general>IEEE conference proceedings</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>3HK</scope></search><sort><creationdate>20180101</creationdate><title>Modeling and Simulation of Spark Streaming</title><author>Lin, Jia-Chun ; Lee, Ming-Chang ; Yu, Ingrid Chieh ; Johnsen, Einar Broch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-77bfc4ec3344197a9e0f36c2fb0865caeae769a39ae591abcbd480945d3855843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data models</topic><topic>Informatics</topic><topic>modeling</topic><topic>Object oriented modeling</topic><topic>Predictive models</topic><topic>Real-time systems</topic><topic>Simulation</topic><topic>Spark Streaming</topic><topic>Sparks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jia-Chun</creatorcontrib><creatorcontrib>Lee, Ming-Chang</creatorcontrib><creatorcontrib>Yu, Ingrid Chieh</creatorcontrib><creatorcontrib>Johnsen, Einar Broch</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Jia-Chun</au><au>Lee, Ming-Chang</au><au>Yu, Ingrid Chieh</au><au>Johnsen, Einar Broch</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and Simulation of Spark Streaming</atitle><btitle>2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)</btitle><stitle>AINA</stitle><date>2018-01-01</date><risdate>2018</risdate><spage>407</spage><epage>413</epage><pages>407-413</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><eisbn>9781538621943</eisbn><eisbn>9781538621950</eisbn><eisbn>1538621940</eisbn><eisbn>1538621959</eisbn><coden>IEEPAD</coden><abstract>As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2018.00068</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-445X
ispartof 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 2018, p.407-413
issn 1550-445X
2332-5658
language eng
recordid cdi_cristin_nora_10852_71512
source NORA - Norwegian Open Research Archives
subjects Data models
Informatics
modeling
Object oriented modeling
Predictive models
Real-time systems
Simulation
Spark Streaming
Sparks
title Modeling and Simulation of Spark Streaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T03%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20Simulation%20of%20Spark%20Streaming&rft.btitle=2018%20IEEE%2032nd%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA)&rft.au=Lin,%20Jia-Chun&rft.date=2018-01-01&rft.spage=407&rft.epage=413&rft.pages=407-413&rft.issn=1550-445X&rft.eissn=2332-5658&rft.coden=IEEPAD&rft_id=info:doi/10.1109/AINA.2018.00068&rft_dat=%3Cieee_3HK%3E8432270%3C/ieee_3HK%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781538621943&rft.eisbn_list=9781538621950&rft.eisbn_list=1538621940&rft.eisbn_list=1538621959&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8432270&rfr_iscdi=true