Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts
Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2017-07, Vol.44 (14), p.7203-7210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7210 |
---|---|
container_issue | 14 |
container_start_page | 7203 |
container_title | Geophysical research letters |
container_volume | 44 |
creator | Conrad, Clinton P. Selway, Kate Hirschmann, Marc M. Ballmer, Maxim D. Wessel, Paul |
description | Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor ( |
doi_str_mv | 10.1002/2017GL074098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_61508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928775150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</originalsourceid><addsrcrecordid>eNp9kM9qGzEQh0VJoE7SW-8V9BqnI63237GYxAkYCiU5i9n1LJbxSltJ25JbHiHP2CfpBCfQU04aRp8-_WaE-KzgSgHobxpUvd5AbaBtPoiFao1ZNgD1iVgAtFzruvoozlLaA0ABhVqI_Sr4lCM6n5MMXv4Oh3mkJNFv5YQ5U_TcHySmvCMf0rSj6Ho50iHLIYZRclumCXv6-_Sc3Uhy69jnujk71vHLRDiGmfUX4nTAQ6JPr-e5eLi5vl_dLjc_1ner75slmoIDb1VpkIrCaGjqekDoATvTKexaqBsiTS1ChWAq6Aa-Njxupbekuw77om2Kc_Hl6O0jR3He-hDRKmhKbStVwgvx9UhMMfyaKWW7D3P0HMqqVvOvJWNMXb55QkqRBjtFN2J8ZJd92bf9f9-M6yP-xx3o8V3Wrn9uyko1pvgHn2yCLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928775150</pqid></control><display><type>article</type><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><source>NORA - Norwegian Open Research Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</creator><creatorcontrib>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</creatorcontrib><description>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (<60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins.
Plain Language Summary
Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement.
Key Points
Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere
On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere
Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074098</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Abundance ; Age ; Asthenosphere ; Basins ; Catalogues ; Cretaceous ; Earth ; Earth surface ; Flanks ; Geophysics ; History ; intraplate volcanism ; Lithosphere ; lithosphere‐asthenosphere boundary ; Mountains ; Ocean basins ; Ocean floor ; Oceans ; partial melt ; Plate tectonics ; Plates (tectonics) ; Remote sensing ; Rocks ; Satellite altimetry ; Satellites ; Seamounts ; Spaceborne remote sensing ; Volcanic activity ; Volcanism ; Volcanoes</subject><ispartof>Geophysical research letters, 2017-07, Vol.44 (14), p.7203-7210</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</citedby><cites>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</cites><orcidid>0000-0003-4314-2351 ; 0000-0001-5708-7336 ; 0000-0001-8886-5030 ; 0000-0003-1213-6645 ; 0000-0001-5752-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,11523,26576,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids></links><search><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Selway, Kate</creatorcontrib><creatorcontrib>Hirschmann, Marc M.</creatorcontrib><creatorcontrib>Ballmer, Maxim D.</creatorcontrib><creatorcontrib>Wessel, Paul</creatorcontrib><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><title>Geophysical research letters</title><description>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (<60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins.
Plain Language Summary
Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement.
Key Points
Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere
On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere
Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</description><subject>Abundance</subject><subject>Age</subject><subject>Asthenosphere</subject><subject>Basins</subject><subject>Catalogues</subject><subject>Cretaceous</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Flanks</subject><subject>Geophysics</subject><subject>History</subject><subject>intraplate volcanism</subject><subject>Lithosphere</subject><subject>lithosphere‐asthenosphere boundary</subject><subject>Mountains</subject><subject>Ocean basins</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>partial melt</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Remote sensing</subject><subject>Rocks</subject><subject>Satellite altimetry</subject><subject>Satellites</subject><subject>Seamounts</subject><subject>Spaceborne remote sensing</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><subject>Volcanoes</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kM9qGzEQh0VJoE7SW-8V9BqnI63237GYxAkYCiU5i9n1LJbxSltJ25JbHiHP2CfpBCfQU04aRp8-_WaE-KzgSgHobxpUvd5AbaBtPoiFao1ZNgD1iVgAtFzruvoozlLaA0ABhVqI_Sr4lCM6n5MMXv4Oh3mkJNFv5YQ5U_TcHySmvCMf0rSj6Ho50iHLIYZRclumCXv6-_Sc3Uhy69jnujk71vHLRDiGmfUX4nTAQ6JPr-e5eLi5vl_dLjc_1ner75slmoIDb1VpkIrCaGjqekDoATvTKexaqBsiTS1ChWAq6Aa-Njxupbekuw77om2Kc_Hl6O0jR3He-hDRKmhKbStVwgvx9UhMMfyaKWW7D3P0HMqqVvOvJWNMXb55QkqRBjtFN2J8ZJd92bf9f9-M6yP-xx3o8V3Wrn9uyko1pvgHn2yCLQ</recordid><startdate>20170728</startdate><enddate>20170728</enddate><creator>Conrad, Clinton P.</creator><creator>Selway, Kate</creator><creator>Hirschmann, Marc M.</creator><creator>Ballmer, Maxim D.</creator><creator>Wessel, Paul</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-4314-2351</orcidid><orcidid>https://orcid.org/0000-0001-5708-7336</orcidid><orcidid>https://orcid.org/0000-0001-8886-5030</orcidid><orcidid>https://orcid.org/0000-0003-1213-6645</orcidid><orcidid>https://orcid.org/0000-0001-5752-7717</orcidid></search><sort><creationdate>20170728</creationdate><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><author>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Age</topic><topic>Asthenosphere</topic><topic>Basins</topic><topic>Catalogues</topic><topic>Cretaceous</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Flanks</topic><topic>Geophysics</topic><topic>History</topic><topic>intraplate volcanism</topic><topic>Lithosphere</topic><topic>lithosphere‐asthenosphere boundary</topic><topic>Mountains</topic><topic>Ocean basins</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>partial melt</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Remote sensing</topic><topic>Rocks</topic><topic>Satellite altimetry</topic><topic>Satellites</topic><topic>Seamounts</topic><topic>Spaceborne remote sensing</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Selway, Kate</creatorcontrib><creatorcontrib>Hirschmann, Marc M.</creatorcontrib><creatorcontrib>Ballmer, Maxim D.</creatorcontrib><creatorcontrib>Wessel, Paul</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrad, Clinton P.</au><au>Selway, Kate</au><au>Hirschmann, Marc M.</au><au>Ballmer, Maxim D.</au><au>Wessel, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</atitle><jtitle>Geophysical research letters</jtitle><date>2017-07-28</date><risdate>2017</risdate><volume>44</volume><issue>14</issue><spage>7203</spage><epage>7210</epage><pages>7203-7210</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (<60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins.
Plain Language Summary
Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement.
Key Points
Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere
On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere
Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2017GL074098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4314-2351</orcidid><orcidid>https://orcid.org/0000-0001-5708-7336</orcidid><orcidid>https://orcid.org/0000-0001-8886-5030</orcidid><orcidid>https://orcid.org/0000-0003-1213-6645</orcidid><orcidid>https://orcid.org/0000-0001-5752-7717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2017-07, Vol.44 (14), p.7203-7210 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_cristin_nora_10852_61508 |
source | NORA - Norwegian Open Research Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection) |
subjects | Abundance Age Asthenosphere Basins Catalogues Cretaceous Earth Earth surface Flanks Geophysics History intraplate volcanism Lithosphere lithosphere‐asthenosphere boundary Mountains Ocean basins Ocean floor Oceans partial melt Plate tectonics Plates (tectonics) Remote sensing Rocks Satellite altimetry Satellites Seamounts Spaceborne remote sensing Volcanic activity Volcanism Volcanoes |
title | Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20volumes%20and%20patterns%20of%20asthenospheric%20melt%20from%20the%20space%E2%80%90time%20distribution%20of%20seamounts&rft.jtitle=Geophysical%20research%20letters&rft.au=Conrad,%20Clinton%20P.&rft.date=2017-07-28&rft.volume=44&rft.issue=14&rft.spage=7203&rft.epage=7210&rft.pages=7203-7210&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074098&rft_dat=%3Cproquest_crist%3E1928775150%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928775150&rft_id=info:pmid/&rfr_iscdi=true |