Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts

Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-07, Vol.44 (14), p.7203-7210
Hauptverfasser: Conrad, Clinton P., Selway, Kate, Hirschmann, Marc M., Ballmer, Maxim D., Wessel, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7210
container_issue 14
container_start_page 7203
container_title Geophysical research letters
container_volume 44
creator Conrad, Clinton P.
Selway, Kate
Hirschmann, Marc M.
Ballmer, Maxim D.
Wessel, Paul
description Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (
doi_str_mv 10.1002/2017GL074098
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_61508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928775150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</originalsourceid><addsrcrecordid>eNp9kM9qGzEQh0VJoE7SW-8V9BqnI63237GYxAkYCiU5i9n1LJbxSltJ25JbHiHP2CfpBCfQU04aRp8-_WaE-KzgSgHobxpUvd5AbaBtPoiFao1ZNgD1iVgAtFzruvoozlLaA0ABhVqI_Sr4lCM6n5MMXv4Oh3mkJNFv5YQ5U_TcHySmvCMf0rSj6Ho50iHLIYZRclumCXv6-_Sc3Uhy69jnujk71vHLRDiGmfUX4nTAQ6JPr-e5eLi5vl_dLjc_1ner75slmoIDb1VpkIrCaGjqekDoATvTKexaqBsiTS1ChWAq6Aa-Njxupbekuw77om2Kc_Hl6O0jR3He-hDRKmhKbStVwgvx9UhMMfyaKWW7D3P0HMqqVvOvJWNMXb55QkqRBjtFN2J8ZJd92bf9f9-M6yP-xx3o8V3Wrn9uyko1pvgHn2yCLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928775150</pqid></control><display><type>article</type><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><source>NORA - Norwegian Open Research Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</creator><creatorcontrib>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</creatorcontrib><description>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (&lt;60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins. Plain Language Summary Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement. Key Points Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2017GL074098</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Abundance ; Age ; Asthenosphere ; Basins ; Catalogues ; Cretaceous ; Earth ; Earth surface ; Flanks ; Geophysics ; History ; intraplate volcanism ; Lithosphere ; lithosphere‐asthenosphere boundary ; Mountains ; Ocean basins ; Ocean floor ; Oceans ; partial melt ; Plate tectonics ; Plates (tectonics) ; Remote sensing ; Rocks ; Satellite altimetry ; Satellites ; Seamounts ; Spaceborne remote sensing ; Volcanic activity ; Volcanism ; Volcanoes</subject><ispartof>Geophysical research letters, 2017-07, Vol.44 (14), p.7203-7210</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</citedby><cites>FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</cites><orcidid>0000-0003-4314-2351 ; 0000-0001-5708-7336 ; 0000-0001-8886-5030 ; 0000-0003-1213-6645 ; 0000-0001-5752-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017GL074098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017GL074098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,11523,26576,27933,27934,45583,45584,46418,46477,46842,46901</link.rule.ids></links><search><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Selway, Kate</creatorcontrib><creatorcontrib>Hirschmann, Marc M.</creatorcontrib><creatorcontrib>Ballmer, Maxim D.</creatorcontrib><creatorcontrib>Wessel, Paul</creatorcontrib><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><title>Geophysical research letters</title><description>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (&lt;60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins. Plain Language Summary Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement. Key Points Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</description><subject>Abundance</subject><subject>Age</subject><subject>Asthenosphere</subject><subject>Basins</subject><subject>Catalogues</subject><subject>Cretaceous</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Flanks</subject><subject>Geophysics</subject><subject>History</subject><subject>intraplate volcanism</subject><subject>Lithosphere</subject><subject>lithosphere‐asthenosphere boundary</subject><subject>Mountains</subject><subject>Ocean basins</subject><subject>Ocean floor</subject><subject>Oceans</subject><subject>partial melt</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Remote sensing</subject><subject>Rocks</subject><subject>Satellite altimetry</subject><subject>Satellites</subject><subject>Seamounts</subject><subject>Spaceborne remote sensing</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><subject>Volcanoes</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kM9qGzEQh0VJoE7SW-8V9BqnI63237GYxAkYCiU5i9n1LJbxSltJ25JbHiHP2CfpBCfQU04aRp8-_WaE-KzgSgHobxpUvd5AbaBtPoiFao1ZNgD1iVgAtFzruvoozlLaA0ABhVqI_Sr4lCM6n5MMXv4Oh3mkJNFv5YQ5U_TcHySmvCMf0rSj6Ho50iHLIYZRclumCXv6-_Sc3Uhy69jnujk71vHLRDiGmfUX4nTAQ6JPr-e5eLi5vl_dLjc_1ner75slmoIDb1VpkIrCaGjqekDoATvTKexaqBsiTS1ChWAq6Aa-Njxupbekuw77om2Kc_Hl6O0jR3He-hDRKmhKbStVwgvx9UhMMfyaKWW7D3P0HMqqVvOvJWNMXb55QkqRBjtFN2J8ZJd92bf9f9-M6yP-xx3o8V3Wrn9uyko1pvgHn2yCLQ</recordid><startdate>20170728</startdate><enddate>20170728</enddate><creator>Conrad, Clinton P.</creator><creator>Selway, Kate</creator><creator>Hirschmann, Marc M.</creator><creator>Ballmer, Maxim D.</creator><creator>Wessel, Paul</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-4314-2351</orcidid><orcidid>https://orcid.org/0000-0001-5708-7336</orcidid><orcidid>https://orcid.org/0000-0001-8886-5030</orcidid><orcidid>https://orcid.org/0000-0003-1213-6645</orcidid><orcidid>https://orcid.org/0000-0001-5752-7717</orcidid></search><sort><creationdate>20170728</creationdate><title>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</title><author>Conrad, Clinton P. ; Selway, Kate ; Hirschmann, Marc M. ; Ballmer, Maxim D. ; Wessel, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4344-d154ae33420877fa0c0ab4b1ab9078ee2e9a06a0460bffa0474062de2bbac3983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Age</topic><topic>Asthenosphere</topic><topic>Basins</topic><topic>Catalogues</topic><topic>Cretaceous</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Flanks</topic><topic>Geophysics</topic><topic>History</topic><topic>intraplate volcanism</topic><topic>Lithosphere</topic><topic>lithosphere‐asthenosphere boundary</topic><topic>Mountains</topic><topic>Ocean basins</topic><topic>Ocean floor</topic><topic>Oceans</topic><topic>partial melt</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Remote sensing</topic><topic>Rocks</topic><topic>Satellite altimetry</topic><topic>Satellites</topic><topic>Seamounts</topic><topic>Spaceborne remote sensing</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conrad, Clinton P.</creatorcontrib><creatorcontrib>Selway, Kate</creatorcontrib><creatorcontrib>Hirschmann, Marc M.</creatorcontrib><creatorcontrib>Ballmer, Maxim D.</creatorcontrib><creatorcontrib>Wessel, Paul</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conrad, Clinton P.</au><au>Selway, Kate</au><au>Hirschmann, Marc M.</au><au>Ballmer, Maxim D.</au><au>Wessel, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts</atitle><jtitle>Geophysical research letters</jtitle><date>2017-07-28</date><risdate>2017</risdate><volume>44</volume><issue>14</issue><spage>7203</spage><epage>7210</epage><pages>7203-7210</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Although partial melt in the asthenosphere is important geodynamically, geophysical constraints on its abundance remain ambiguous. We use a database of seamounts detected using satellite altimetry to constrain the temporal history of erupted asthenospheric melt. We find that intraplate volcanism on young seafloor (&lt;60 Ma) equates to a ~20 m thick layer spread across the seafloor. If these seamounts tap partial melt within a ~20 km thick layer beneath the ridge flanks, they indicate extraction of an average melt fraction of ~0.1%. If they source thinner layers or more laterally restricted domains, larger melt fractions are required. Increased seamount volumes for older lithosphere suggest either more active ridge flank volcanism during the Cretaceous or additional recent melt eruption on older seafloor. Pacific basin age constraints suggest that both processes are important. Our results indicate that small volumes of partial melt may be prevalent in the upper asthenosphere across ocean basins. Plain Language Summary Thousands of volcanic mountains known as “seamounts” lie beneath the world's oceans. These volcanoes are produced by the eruption of melted rock onto the Earth's surface, but it is unknown how much melted rock has been erupted onto the seafloor to produce the seamounts. We can now estimate this using new catalogs of seamounts that have been detected by satellites. We find that the world's seamounts, if spread out, would cover the seafloor with a rocky layer at least 18 m thick. We find that about half of this thickness is produced on newly created seafloor in the middle of the oceans and the other half accumulates after the seafloor ages to more than 60 Myr. These estimates provide constraints on how much melted rock must be present beneath the Earth's surface to feed these volcanoes. In particular, we find that the 20 km immediately beneath the plates should contain about 0.1% melt. This small amount of melt may be important for weakening the rocks beneath the tectonic plates, which may enable their movement. Key Points Comprehensive seamount databases provide new constraints on the volume of partial melt erupted from the asthenosphere On young seafloor, seamount volumes equate to a ~20 m thick layer, corresponding to extraction of 0.1% melt from 20 km of asthenosphere Greater seamount volumes on Cretaceous seafloor indicate greater melt extraction in the past and additional eruption on older seafloor</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017GL074098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4314-2351</orcidid><orcidid>https://orcid.org/0000-0001-5708-7336</orcidid><orcidid>https://orcid.org/0000-0001-8886-5030</orcidid><orcidid>https://orcid.org/0000-0003-1213-6645</orcidid><orcidid>https://orcid.org/0000-0001-5752-7717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-07, Vol.44 (14), p.7203-7210
issn 0094-8276
1944-8007
language eng
recordid cdi_cristin_nora_10852_61508
source NORA - Norwegian Open Research Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection)
subjects Abundance
Age
Asthenosphere
Basins
Catalogues
Cretaceous
Earth
Earth surface
Flanks
Geophysics
History
intraplate volcanism
Lithosphere
lithosphere‐asthenosphere boundary
Mountains
Ocean basins
Ocean floor
Oceans
partial melt
Plate tectonics
Plates (tectonics)
Remote sensing
Rocks
Satellite altimetry
Satellites
Seamounts
Spaceborne remote sensing
Volcanic activity
Volcanism
Volcanoes
title Constraints on volumes and patterns of asthenospheric melt from the space‐time distribution of seamounts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraints%20on%20volumes%20and%20patterns%20of%20asthenospheric%20melt%20from%20the%20space%E2%80%90time%20distribution%20of%20seamounts&rft.jtitle=Geophysical%20research%20letters&rft.au=Conrad,%20Clinton%20P.&rft.date=2017-07-28&rft.volume=44&rft.issue=14&rft.spage=7203&rft.epage=7210&rft.pages=7203-7210&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2017GL074098&rft_dat=%3Cproquest_crist%3E1928775150%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928775150&rft_id=info:pmid/&rfr_iscdi=true