In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes
Water uptake by black carbon (BC)‐containing aerosol was quantified in North American wildfire plumes of varying age (1 to ~40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD‐SP2) is used to optically size BC‐containing particles under dry and humid conditions from which...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2017, Vol.122 (2), p.1086-1097 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1097 |
---|---|
container_issue | 2 |
container_start_page | 1086 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 122 |
creator | Perring, Anne E. Schwarz, Joshua P. Markovic, Milos Z. Fahey, David W. Jimenez, Jose L. Campuzano‐Jost, Pedro Palm, Brett D. Wisthaler, Armin Mikoviny, Tomas Diskin, Glenn Sachse, Glen Ziemba, Luke Anderson, Bruce Shingler, Taylor Crosbie, Ewan Sorooshian, Armin Yokelson, Robert Gao, Ru‐Shan |
description | Water uptake by black carbon (BC)‐containing aerosol was quantified in North American wildfire plumes of varying age (1 to ~40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD‐SP2) is used to optically size BC‐containing particles under dry and humid conditions from which we extract the hygroscopicity parameter, κ, of materials internally mixed with BC. Instrumental variability and the uncertainty of the technique are briefly discussed. An ensemble average κ of 0.04 is found for the set of plumes sampled, consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. The temporal evolution of κ in the Yosemite Rim Fire plume is explored to constrain the rate of conversion of BC‐containing aerosol from hydrophobic to more hydrophilic modes in these emissions. A BC‐specific κ increase of ~0.06 over 40 h is found, fit well with an exponential curve corresponding to a transition from a κ of 0 to a κ of ~0.09 with an e‐folding time of 29 h. Although only a few percent of wildfire particles contain BC, a similar κ increase is estimated for bulk aerosol and the measured aerosol composition is used to infer that the observed κ change is driven by a combination of incorporation of ammonium sulfate and oxidation of existing organic materials. Finally, a substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be active as cloud condensation nuclei shortly after emission likely indicating efficient wet removal. These results can constrain model treatment of BC from wildfire sources.
Key Points
BC particles in wildfire plumes are found to be thickly coated with low hygroscopicity materials (ensemble average κ of 0.04)
Hygroscopicity of BC‐containing particles increases in an evolving plume due to incorporation of ammonium sulfate and oxidation of organics
A substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be CCN active shortly after emission |
doi_str_mv | 10.1002/2016JD025688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_61013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884109705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5292-98a5564e91a1b0b12025d9ef7bc7b0fceaab7f8bf5e89732ae01c0a032def683</originalsourceid><addsrcrecordid>eNqN0c1qFTEUwPFBFFra7twbcNOFt83HTSZZSqv9oCBIFy6EcJJ7ImlnkttkhnJ3PoLP2Ccx5doiLorZJIsfgf85XfeW0SNGKT_mlKnLU8ql0vpVt8uZMgttjHr9_O6_7XQHtd7QdjQVS7nc7b5fJFLjNJMRoc4FR0xTJTmQe5iwkHk9wS0StyFuAH9LPBSX08PPXz6nCWKK6QcBLLnmgcRE7uOwCrEgWQ_ziHW_exNgqHjw597rrj9_uj45X1x9Obs4-Xi18JIbvjAapFRLNAyYo47xFrEyGHrne0eDRwDXB-2CxBYhOCBlngIVfIVBabHXvdt-60usU0w25QKWUS25VYwy0cThVqxLvpuxTnaM1eMwQMI8V8u0XjJqeir_g_Zci17KR_r-H3qT55JaqWWGtQEbzdWLSistldGaNfXhqSHXWjDYdYkjlE3rsI_7tX_vt3Gx5W3iuHnR2suzr6dSSMHFb4XPpMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868569881</pqid></control><display><type>article</type><title>In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes</title><source>Wiley Free Content</source><source>NORA - Norwegian Open Research Archives</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Perring, Anne E. ; Schwarz, Joshua P. ; Markovic, Milos Z. ; Fahey, David W. ; Jimenez, Jose L. ; Campuzano‐Jost, Pedro ; Palm, Brett D. ; Wisthaler, Armin ; Mikoviny, Tomas ; Diskin, Glenn ; Sachse, Glen ; Ziemba, Luke ; Anderson, Bruce ; Shingler, Taylor ; Crosbie, Ewan ; Sorooshian, Armin ; Yokelson, Robert ; Gao, Ru‐Shan</creator><creatorcontrib>Perring, Anne E. ; Schwarz, Joshua P. ; Markovic, Milos Z. ; Fahey, David W. ; Jimenez, Jose L. ; Campuzano‐Jost, Pedro ; Palm, Brett D. ; Wisthaler, Armin ; Mikoviny, Tomas ; Diskin, Glenn ; Sachse, Glen ; Ziemba, Luke ; Anderson, Bruce ; Shingler, Taylor ; Crosbie, Ewan ; Sorooshian, Armin ; Yokelson, Robert ; Gao, Ru‐Shan</creatorcontrib><description>Water uptake by black carbon (BC)‐containing aerosol was quantified in North American wildfire plumes of varying age (1 to ~40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD‐SP2) is used to optically size BC‐containing particles under dry and humid conditions from which we extract the hygroscopicity parameter, κ, of materials internally mixed with BC. Instrumental variability and the uncertainty of the technique are briefly discussed. An ensemble average κ of 0.04 is found for the set of plumes sampled, consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. The temporal evolution of κ in the Yosemite Rim Fire plume is explored to constrain the rate of conversion of BC‐containing aerosol from hydrophobic to more hydrophilic modes in these emissions. A BC‐specific κ increase of ~0.06 over 40 h is found, fit well with an exponential curve corresponding to a transition from a κ of 0 to a κ of ~0.09 with an e‐folding time of 29 h. Although only a few percent of wildfire particles contain BC, a similar κ increase is estimated for bulk aerosol and the measured aerosol composition is used to infer that the observed κ change is driven by a combination of incorporation of ammonium sulfate and oxidation of existing organic materials. Finally, a substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be active as cloud condensation nuclei shortly after emission likely indicating efficient wet removal. These results can constrain model treatment of BC from wildfire sources.
Key Points
BC particles in wildfire plumes are found to be thickly coated with low hygroscopicity materials (ensemble average κ of 0.04)
Hygroscopicity of BC‐containing particles increases in an evolving plume due to incorporation of ammonium sulfate and oxidation of organics
A substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be CCN active shortly after emission</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2016JD025688</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosol composition ; Aerosols ; Age ; Air sampling ; Ammonium ; Ammonium compounds ; Ammonium sulfate ; Ammonium sulfates ; Biomass ; Biomass burning ; Black carbon ; Bulk sampling ; Burning ; Carbon ; Carbon aerosols ; Cloud condensation nuclei ; Coating ; Combustion ; Condensation ; Condensation nuclei ; Conversion ; Drying ; Emission ; Emissions ; Estimates ; Evolution ; Fire plumes ; Fires ; Folding ; Geophysics ; Hydrophobicity ; Hygroscopicity ; In situ measurement ; Mathematical models ; Modes ; Organic materials ; Oxidation ; Plumes ; Removal ; SP2 ; Sulfates ; Uncertainty ; Uptake ; Variability ; Water ; Water uptake ; Wildfires</subject><ispartof>Journal of geophysical research. Atmospheres, 2017, Vol.122 (2), p.1086-1097</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5292-98a5564e91a1b0b12025d9ef7bc7b0fceaab7f8bf5e89732ae01c0a032def683</citedby><cites>FETCH-LOGICAL-c5292-98a5564e91a1b0b12025d9ef7bc7b0fceaab7f8bf5e89732ae01c0a032def683</cites><orcidid>0000-0001-6985-1637 ; 0000-0003-1720-0634 ; 0000-0002-8461-0783 ; 0000-0002-8895-8066 ; 0000-0003-3930-010X ; 0000-0001-6203-1847 ; 0000-0002-4787-2688 ; 0000-0003-4596-1027 ; 0000-0002-8415-6808 ; 0000-0003-2231-7503 ; 0000-0002-9123-2223 ; 0000-0001-5548-0812 ; 0000-0002-2243-2264 ; 0000-0002-3617-0269 ; 0000-0001-5050-3018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JD025688$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JD025688$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,4010,26544,27900,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Perring, Anne E.</creatorcontrib><creatorcontrib>Schwarz, Joshua P.</creatorcontrib><creatorcontrib>Markovic, Milos Z.</creatorcontrib><creatorcontrib>Fahey, David W.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Palm, Brett D.</creatorcontrib><creatorcontrib>Wisthaler, Armin</creatorcontrib><creatorcontrib>Mikoviny, Tomas</creatorcontrib><creatorcontrib>Diskin, Glenn</creatorcontrib><creatorcontrib>Sachse, Glen</creatorcontrib><creatorcontrib>Ziemba, Luke</creatorcontrib><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Shingler, Taylor</creatorcontrib><creatorcontrib>Crosbie, Ewan</creatorcontrib><creatorcontrib>Sorooshian, Armin</creatorcontrib><creatorcontrib>Yokelson, Robert</creatorcontrib><creatorcontrib>Gao, Ru‐Shan</creatorcontrib><title>In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes</title><title>Journal of geophysical research. Atmospheres</title><description>Water uptake by black carbon (BC)‐containing aerosol was quantified in North American wildfire plumes of varying age (1 to ~40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD‐SP2) is used to optically size BC‐containing particles under dry and humid conditions from which we extract the hygroscopicity parameter, κ, of materials internally mixed with BC. Instrumental variability and the uncertainty of the technique are briefly discussed. An ensemble average κ of 0.04 is found for the set of plumes sampled, consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. The temporal evolution of κ in the Yosemite Rim Fire plume is explored to constrain the rate of conversion of BC‐containing aerosol from hydrophobic to more hydrophilic modes in these emissions. A BC‐specific κ increase of ~0.06 over 40 h is found, fit well with an exponential curve corresponding to a transition from a κ of 0 to a κ of ~0.09 with an e‐folding time of 29 h. Although only a few percent of wildfire particles contain BC, a similar κ increase is estimated for bulk aerosol and the measured aerosol composition is used to infer that the observed κ change is driven by a combination of incorporation of ammonium sulfate and oxidation of existing organic materials. Finally, a substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be active as cloud condensation nuclei shortly after emission likely indicating efficient wet removal. These results can constrain model treatment of BC from wildfire sources.
Key Points
BC particles in wildfire plumes are found to be thickly coated with low hygroscopicity materials (ensemble average κ of 0.04)
Hygroscopicity of BC‐containing particles increases in an evolving plume due to incorporation of ammonium sulfate and oxidation of organics
A substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be CCN active shortly after emission</description><subject>aerosol</subject><subject>Aerosol composition</subject><subject>Aerosols</subject><subject>Age</subject><subject>Air sampling</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Ammonium sulfate</subject><subject>Ammonium sulfates</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Black carbon</subject><subject>Bulk sampling</subject><subject>Burning</subject><subject>Carbon</subject><subject>Carbon aerosols</subject><subject>Cloud condensation nuclei</subject><subject>Coating</subject><subject>Combustion</subject><subject>Condensation</subject><subject>Condensation nuclei</subject><subject>Conversion</subject><subject>Drying</subject><subject>Emission</subject><subject>Emissions</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Fire plumes</subject><subject>Fires</subject><subject>Folding</subject><subject>Geophysics</subject><subject>Hydrophobicity</subject><subject>Hygroscopicity</subject><subject>In situ measurement</subject><subject>Mathematical models</subject><subject>Modes</subject><subject>Organic materials</subject><subject>Oxidation</subject><subject>Plumes</subject><subject>Removal</subject><subject>SP2</subject><subject>Sulfates</subject><subject>Uncertainty</subject><subject>Uptake</subject><subject>Variability</subject><subject>Water</subject><subject>Water uptake</subject><subject>Wildfires</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqN0c1qFTEUwPFBFFra7twbcNOFt83HTSZZSqv9oCBIFy6EcJJ7ImlnkttkhnJ3PoLP2Ccx5doiLorZJIsfgf85XfeW0SNGKT_mlKnLU8ql0vpVt8uZMgttjHr9_O6_7XQHtd7QdjQVS7nc7b5fJFLjNJMRoc4FR0xTJTmQe5iwkHk9wS0StyFuAH9LPBSX08PPXz6nCWKK6QcBLLnmgcRE7uOwCrEgWQ_ziHW_exNgqHjw597rrj9_uj45X1x9Obs4-Xi18JIbvjAapFRLNAyYo47xFrEyGHrne0eDRwDXB-2CxBYhOCBlngIVfIVBabHXvdt-60usU0w25QKWUS25VYwy0cThVqxLvpuxTnaM1eMwQMI8V8u0XjJqeir_g_Zci17KR_r-H3qT55JaqWWGtQEbzdWLSistldGaNfXhqSHXWjDYdYkjlE3rsI_7tX_vt3Gx5W3iuHnR2suzr6dSSMHFb4XPpMw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Perring, Anne E.</creator><creator>Schwarz, Joshua P.</creator><creator>Markovic, Milos Z.</creator><creator>Fahey, David W.</creator><creator>Jimenez, Jose L.</creator><creator>Campuzano‐Jost, Pedro</creator><creator>Palm, Brett D.</creator><creator>Wisthaler, Armin</creator><creator>Mikoviny, Tomas</creator><creator>Diskin, Glenn</creator><creator>Sachse, Glen</creator><creator>Ziemba, Luke</creator><creator>Anderson, Bruce</creator><creator>Shingler, Taylor</creator><creator>Crosbie, Ewan</creator><creator>Sorooshian, Armin</creator><creator>Yokelson, Robert</creator><creator>Gao, Ru‐Shan</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-6985-1637</orcidid><orcidid>https://orcid.org/0000-0003-1720-0634</orcidid><orcidid>https://orcid.org/0000-0002-8461-0783</orcidid><orcidid>https://orcid.org/0000-0002-8895-8066</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-4787-2688</orcidid><orcidid>https://orcid.org/0000-0003-4596-1027</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid><orcidid>https://orcid.org/0000-0003-2231-7503</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2243-2264</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0001-5050-3018</orcidid></search><sort><creationdate>2017</creationdate><title>In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes</title><author>Perring, Anne E. ; Schwarz, Joshua P. ; Markovic, Milos Z. ; Fahey, David W. ; Jimenez, Jose L. ; Campuzano‐Jost, Pedro ; Palm, Brett D. ; Wisthaler, Armin ; Mikoviny, Tomas ; Diskin, Glenn ; Sachse, Glen ; Ziemba, Luke ; Anderson, Bruce ; Shingler, Taylor ; Crosbie, Ewan ; Sorooshian, Armin ; Yokelson, Robert ; Gao, Ru‐Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5292-98a5564e91a1b0b12025d9ef7bc7b0fceaab7f8bf5e89732ae01c0a032def683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol</topic><topic>Aerosol composition</topic><topic>Aerosols</topic><topic>Age</topic><topic>Air sampling</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Ammonium sulfate</topic><topic>Ammonium sulfates</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Black carbon</topic><topic>Bulk sampling</topic><topic>Burning</topic><topic>Carbon</topic><topic>Carbon aerosols</topic><topic>Cloud condensation nuclei</topic><topic>Coating</topic><topic>Combustion</topic><topic>Condensation</topic><topic>Condensation nuclei</topic><topic>Conversion</topic><topic>Drying</topic><topic>Emission</topic><topic>Emissions</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Fire plumes</topic><topic>Fires</topic><topic>Folding</topic><topic>Geophysics</topic><topic>Hydrophobicity</topic><topic>Hygroscopicity</topic><topic>In situ measurement</topic><topic>Mathematical models</topic><topic>Modes</topic><topic>Organic materials</topic><topic>Oxidation</topic><topic>Plumes</topic><topic>Removal</topic><topic>SP2</topic><topic>Sulfates</topic><topic>Uncertainty</topic><topic>Uptake</topic><topic>Variability</topic><topic>Water</topic><topic>Water uptake</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perring, Anne E.</creatorcontrib><creatorcontrib>Schwarz, Joshua P.</creatorcontrib><creatorcontrib>Markovic, Milos Z.</creatorcontrib><creatorcontrib>Fahey, David W.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Campuzano‐Jost, Pedro</creatorcontrib><creatorcontrib>Palm, Brett D.</creatorcontrib><creatorcontrib>Wisthaler, Armin</creatorcontrib><creatorcontrib>Mikoviny, Tomas</creatorcontrib><creatorcontrib>Diskin, Glenn</creatorcontrib><creatorcontrib>Sachse, Glen</creatorcontrib><creatorcontrib>Ziemba, Luke</creatorcontrib><creatorcontrib>Anderson, Bruce</creatorcontrib><creatorcontrib>Shingler, Taylor</creatorcontrib><creatorcontrib>Crosbie, Ewan</creatorcontrib><creatorcontrib>Sorooshian, Armin</creatorcontrib><creatorcontrib>Yokelson, Robert</creatorcontrib><creatorcontrib>Gao, Ru‐Shan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perring, Anne E.</au><au>Schwarz, Joshua P.</au><au>Markovic, Milos Z.</au><au>Fahey, David W.</au><au>Jimenez, Jose L.</au><au>Campuzano‐Jost, Pedro</au><au>Palm, Brett D.</au><au>Wisthaler, Armin</au><au>Mikoviny, Tomas</au><au>Diskin, Glenn</au><au>Sachse, Glen</au><au>Ziemba, Luke</au><au>Anderson, Bruce</au><au>Shingler, Taylor</au><au>Crosbie, Ewan</au><au>Sorooshian, Armin</au><au>Yokelson, Robert</au><au>Gao, Ru‐Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017</date><risdate>2017</risdate><volume>122</volume><issue>2</issue><spage>1086</spage><epage>1097</epage><pages>1086-1097</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Water uptake by black carbon (BC)‐containing aerosol was quantified in North American wildfire plumes of varying age (1 to ~40 h old) sampled during the SEAC4RS mission (2013). A Humidified Dual SP2 (HD‐SP2) is used to optically size BC‐containing particles under dry and humid conditions from which we extract the hygroscopicity parameter, κ, of materials internally mixed with BC. Instrumental variability and the uncertainty of the technique are briefly discussed. An ensemble average κ of 0.04 is found for the set of plumes sampled, consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. The temporal evolution of κ in the Yosemite Rim Fire plume is explored to constrain the rate of conversion of BC‐containing aerosol from hydrophobic to more hydrophilic modes in these emissions. A BC‐specific κ increase of ~0.06 over 40 h is found, fit well with an exponential curve corresponding to a transition from a κ of 0 to a κ of ~0.09 with an e‐folding time of 29 h. Although only a few percent of wildfire particles contain BC, a similar κ increase is estimated for bulk aerosol and the measured aerosol composition is used to infer that the observed κ change is driven by a combination of incorporation of ammonium sulfate and oxidation of existing organic materials. Finally, a substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be active as cloud condensation nuclei shortly after emission likely indicating efficient wet removal. These results can constrain model treatment of BC from wildfire sources.
Key Points
BC particles in wildfire plumes are found to be thickly coated with low hygroscopicity materials (ensemble average κ of 0.04)
Hygroscopicity of BC‐containing particles increases in an evolving plume due to incorporation of ammonium sulfate and oxidation of organics
A substantial fraction of wildfire‐generated BC‐containing aerosol is calculated to be CCN active shortly after emission</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JD025688</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6985-1637</orcidid><orcidid>https://orcid.org/0000-0003-1720-0634</orcidid><orcidid>https://orcid.org/0000-0002-8461-0783</orcidid><orcidid>https://orcid.org/0000-0002-8895-8066</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-4787-2688</orcidid><orcidid>https://orcid.org/0000-0003-4596-1027</orcidid><orcidid>https://orcid.org/0000-0002-8415-6808</orcidid><orcidid>https://orcid.org/0000-0003-2231-7503</orcidid><orcidid>https://orcid.org/0000-0002-9123-2223</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-2243-2264</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0001-5050-3018</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2017, Vol.122 (2), p.1086-1097 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_cristin_nora_10852_61013 |
source | Wiley Free Content; NORA - Norwegian Open Research Archives; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | aerosol Aerosol composition Aerosols Age Air sampling Ammonium Ammonium compounds Ammonium sulfate Ammonium sulfates Biomass Biomass burning Black carbon Bulk sampling Burning Carbon Carbon aerosols Cloud condensation nuclei Coating Combustion Condensation Condensation nuclei Conversion Drying Emission Emissions Estimates Evolution Fire plumes Fires Folding Geophysics Hydrophobicity Hygroscopicity In situ measurement Mathematical models Modes Organic materials Oxidation Plumes Removal SP2 Sulfates Uncertainty Uptake Variability Water Water uptake Wildfires |
title | In situ measurements of water uptake by black carbon‐containing aerosol in wildfire plumes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20measurements%20of%20water%20uptake%20by%20black%20carbon%E2%80%90containing%20aerosol%20in%20wildfire%20plumes&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Perring,%20Anne%20E.&rft.date=2017&rft.volume=122&rft.issue=2&rft.spage=1086&rft.epage=1097&rft.pages=1086-1097&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2016JD025688&rft_dat=%3Cproquest_crist%3E1884109705%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868569881&rft_id=info:pmid/&rfr_iscdi=true |