High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms

Bézier surfaces are mathematical tools employed in a wide variety of applications. Some works in the literature propose parallelization strategies to improve performance for the computation of Bézier surfaces. These approaches, however, are mainly focused on graphics applications and often are not d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of parallel programming 2018-12, Vol.46 (6), p.1035-1062
Hauptverfasser: Palomar, Rafael, Gómez-Luna, Juan, Cheikh, Faouzi A., Olivares-Bueno, Joaquín, Elle, Ole J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue 6
container_start_page 1035
container_title International journal of parallel programming
container_volume 46
creator Palomar, Rafael
Gómez-Luna, Juan
Cheikh, Faouzi A.
Olivares-Bueno, Joaquín
Elle, Ole J.
description Bézier surfaces are mathematical tools employed in a wide variety of applications. Some works in the literature propose parallelization strategies to improve performance for the computation of Bézier surfaces. These approaches, however, are mainly focused on graphics applications and often are not directly applicable to other domains. In this work, we propose a new method for the computation of Bézier surfaces, together with approaches to efficiently map the method onto different platforms (CPUs, discrete and integrated GPUs). Additionally, we explore CPU–GPU cooperation mechanisms for computing Bézier surfaces using two integrated heterogeneous systems with different characteristics. An exhaustive performance evaluation—including different data-types, rendering and several hardware platforms—is performed. The results show that our method achieves speedups as high as 3.12x (double-precision) and 2.47x (single-precision) on CPU, and 3.69x (double-precision) and 13.14x (single-precision) on GPU compared to other methods in the literature. In heterogeneous platforms, the CPU–GPU cooperation increases the performance up to 2.09x with respect to the GPU-only version. Our method and the associated parallelization approaches can be easily employed in domains other than computer-graphics (e.g., image registration, bio-mechanical modeling and flow simulation), and extended to other Bézier formulations and Bézier constructions of higher order than surfaces.
doi_str_mv 10.1007/s10766-017-0506-1
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_58508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2132193973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-87de433707220719f70fc2fd70c0eef9058904e6991fc843cd8fc541fc2aae213</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gCcLnqOTpmnSoy7qCgsuqOAthHSyduk2a9Ie9I18Dl_MlFU8eQoTvv-b4SfklMEFA5CXkYEsSwpMUhBQUrZHJkxITmVZwD6ZgFKCykKoQ3IU4xoAKqnUhLzMm9UrXWJwPmxMZzGb-c126E3f-C7zLrv--vxoMGSPQ3DGYszS99IE07bYZqarszn2GPwKO_RDzJat6UdVPCYHzrQRT37eKXm-vXmazeni4e5-drWgliveUyVrLDiXIPMcJKucBGdzV0uwgOgqEKqCAsuqYs6qgttaOSuKNOTGYM74lJztvDY0sW863flgNAMlci2UAJWI8x2xDf5twNjrtR9Cl47SKZ-zileSJ4r9enyMAZ3ehmZjwnty6bFivatYp4r1WLEed-e7TExst8LwZ_4_9A214X2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132193973</pqid></control><display><type>article</type><title>High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms</title><source>NORA - Norwegian Open Research Archives</source><source>SpringerLink Journals - AutoHoldings</source><creator>Palomar, Rafael ; Gómez-Luna, Juan ; Cheikh, Faouzi A. ; Olivares-Bueno, Joaquín ; Elle, Ole J.</creator><creatorcontrib>Palomar, Rafael ; Gómez-Luna, Juan ; Cheikh, Faouzi A. ; Olivares-Bueno, Joaquín ; Elle, Ole J.</creatorcontrib><description>Bézier surfaces are mathematical tools employed in a wide variety of applications. Some works in the literature propose parallelization strategies to improve performance for the computation of Bézier surfaces. These approaches, however, are mainly focused on graphics applications and often are not directly applicable to other domains. In this work, we propose a new method for the computation of Bézier surfaces, together with approaches to efficiently map the method onto different platforms (CPUs, discrete and integrated GPUs). Additionally, we explore CPU–GPU cooperation mechanisms for computing Bézier surfaces using two integrated heterogeneous systems with different characteristics. An exhaustive performance evaluation—including different data-types, rendering and several hardware platforms—is performed. The results show that our method achieves speedups as high as 3.12x (double-precision) and 2.47x (single-precision) on CPU, and 3.69x (double-precision) and 13.14x (single-precision) on GPU compared to other methods in the literature. In heterogeneous platforms, the CPU–GPU cooperation increases the performance up to 2.09x with respect to the GPU-only version. Our method and the associated parallelization approaches can be easily employed in domains other than computer-graphics (e.g., image registration, bio-mechanical modeling and flow simulation), and extended to other Bézier formulations and Bézier constructions of higher order than surfaces.</description><identifier>ISSN: 0885-7458</identifier><identifier>EISSN: 1573-7640</identifier><identifier>DOI: 10.1007/s10766-017-0506-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Computer simulation ; Cooperation ; Domains ; Flow simulation ; Formulations ; Image registration ; Mathematical analysis ; Parallel processing ; Performance enhancement ; Performance evaluation ; Platforms ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Theory of Computation</subject><ispartof>International journal of parallel programming, 2018-12, Vol.46 (6), p.1035-1062</ispartof><rights>The Author(s) 2017</rights><rights>International Journal of Parallel Programming is a copyright of Springer, (2017). All Rights Reserved. © 2017. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-87de433707220719f70fc2fd70c0eef9058904e6991fc843cd8fc541fc2aae213</citedby><cites>FETCH-LOGICAL-c383t-87de433707220719f70fc2fd70c0eef9058904e6991fc843cd8fc541fc2aae213</cites><orcidid>0000-0002-9136-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10766-017-0506-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10766-017-0506-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,26544,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palomar, Rafael</creatorcontrib><creatorcontrib>Gómez-Luna, Juan</creatorcontrib><creatorcontrib>Cheikh, Faouzi A.</creatorcontrib><creatorcontrib>Olivares-Bueno, Joaquín</creatorcontrib><creatorcontrib>Elle, Ole J.</creatorcontrib><title>High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms</title><title>International journal of parallel programming</title><addtitle>Int J Parallel Prog</addtitle><description>Bézier surfaces are mathematical tools employed in a wide variety of applications. Some works in the literature propose parallelization strategies to improve performance for the computation of Bézier surfaces. These approaches, however, are mainly focused on graphics applications and often are not directly applicable to other domains. In this work, we propose a new method for the computation of Bézier surfaces, together with approaches to efficiently map the method onto different platforms (CPUs, discrete and integrated GPUs). Additionally, we explore CPU–GPU cooperation mechanisms for computing Bézier surfaces using two integrated heterogeneous systems with different characteristics. An exhaustive performance evaluation—including different data-types, rendering and several hardware platforms—is performed. The results show that our method achieves speedups as high as 3.12x (double-precision) and 2.47x (single-precision) on CPU, and 3.69x (double-precision) and 13.14x (single-precision) on GPU compared to other methods in the literature. In heterogeneous platforms, the CPU–GPU cooperation increases the performance up to 2.09x with respect to the GPU-only version. Our method and the associated parallelization approaches can be easily employed in domains other than computer-graphics (e.g., image registration, bio-mechanical modeling and flow simulation), and extended to other Bézier formulations and Bézier constructions of higher order than surfaces.</description><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Cooperation</subject><subject>Domains</subject><subject>Flow simulation</subject><subject>Formulations</subject><subject>Image registration</subject><subject>Mathematical analysis</subject><subject>Parallel processing</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Platforms</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Theory of Computation</subject><issn>0885-7458</issn><issn>1573-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>3HK</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gCcLnqOTpmnSoy7qCgsuqOAthHSyduk2a9Ie9I18Dl_MlFU8eQoTvv-b4SfklMEFA5CXkYEsSwpMUhBQUrZHJkxITmVZwD6ZgFKCykKoQ3IU4xoAKqnUhLzMm9UrXWJwPmxMZzGb-c126E3f-C7zLrv--vxoMGSPQ3DGYszS99IE07bYZqarszn2GPwKO_RDzJat6UdVPCYHzrQRT37eKXm-vXmazeni4e5-drWgliveUyVrLDiXIPMcJKucBGdzV0uwgOgqEKqCAsuqYs6qgttaOSuKNOTGYM74lJztvDY0sW863flgNAMlci2UAJWI8x2xDf5twNjrtR9Cl47SKZ-zileSJ4r9enyMAZ3ehmZjwnty6bFivatYp4r1WLEed-e7TExst8LwZ_4_9A214X2w</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Palomar, Rafael</creator><creator>Gómez-Luna, Juan</creator><creator>Cheikh, Faouzi A.</creator><creator>Olivares-Bueno, Joaquín</creator><creator>Elle, Ole J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-9136-4154</orcidid></search><sort><creationdate>20181201</creationdate><title>High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms</title><author>Palomar, Rafael ; Gómez-Luna, Juan ; Cheikh, Faouzi A. ; Olivares-Bueno, Joaquín ; Elle, Ole J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-87de433707220719f70fc2fd70c0eef9058904e6991fc843cd8fc541fc2aae213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Cooperation</topic><topic>Domains</topic><topic>Flow simulation</topic><topic>Formulations</topic><topic>Image registration</topic><topic>Mathematical analysis</topic><topic>Parallel processing</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Platforms</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palomar, Rafael</creatorcontrib><creatorcontrib>Gómez-Luna, Juan</creatorcontrib><creatorcontrib>Cheikh, Faouzi A.</creatorcontrib><creatorcontrib>Olivares-Bueno, Joaquín</creatorcontrib><creatorcontrib>Elle, Ole J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>International journal of parallel programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palomar, Rafael</au><au>Gómez-Luna, Juan</au><au>Cheikh, Faouzi A.</au><au>Olivares-Bueno, Joaquín</au><au>Elle, Ole J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms</atitle><jtitle>International journal of parallel programming</jtitle><stitle>Int J Parallel Prog</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>46</volume><issue>6</issue><spage>1035</spage><epage>1062</epage><pages>1035-1062</pages><issn>0885-7458</issn><eissn>1573-7640</eissn><abstract>Bézier surfaces are mathematical tools employed in a wide variety of applications. Some works in the literature propose parallelization strategies to improve performance for the computation of Bézier surfaces. These approaches, however, are mainly focused on graphics applications and often are not directly applicable to other domains. In this work, we propose a new method for the computation of Bézier surfaces, together with approaches to efficiently map the method onto different platforms (CPUs, discrete and integrated GPUs). Additionally, we explore CPU–GPU cooperation mechanisms for computing Bézier surfaces using two integrated heterogeneous systems with different characteristics. An exhaustive performance evaluation—including different data-types, rendering and several hardware platforms—is performed. The results show that our method achieves speedups as high as 3.12x (double-precision) and 2.47x (single-precision) on CPU, and 3.69x (double-precision) and 13.14x (single-precision) on GPU compared to other methods in the literature. In heterogeneous platforms, the CPU–GPU cooperation increases the performance up to 2.09x with respect to the GPU-only version. Our method and the associated parallelization approaches can be easily employed in domains other than computer-graphics (e.g., image registration, bio-mechanical modeling and flow simulation), and extended to other Bézier formulations and Bézier constructions of higher order than surfaces.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10766-017-0506-1</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9136-4154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7458
ispartof International journal of parallel programming, 2018-12, Vol.46 (6), p.1035-1062
issn 0885-7458
1573-7640
language eng
recordid cdi_cristin_nora_10852_58508
source NORA - Norwegian Open Research Archives; SpringerLink Journals - AutoHoldings
subjects Computer Science
Computer simulation
Cooperation
Domains
Flow simulation
Formulations
Image registration
Mathematical analysis
Parallel processing
Performance enhancement
Performance evaluation
Platforms
Processor Architectures
Software Engineering/Programming and Operating Systems
Theory of Computation
title High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Computation%20of%20B%C3%A9zier%20Surfaces%20on%20Parallel%20and%20Heterogeneous%20Platforms&rft.jtitle=International%20journal%20of%20parallel%20programming&rft.au=Palomar,%20Rafael&rft.date=2018-12-01&rft.volume=46&rft.issue=6&rft.spage=1035&rft.epage=1062&rft.pages=1035-1062&rft.issn=0885-7458&rft.eissn=1573-7640&rft_id=info:doi/10.1007/s10766-017-0506-1&rft_dat=%3Cproquest_crist%3E2132193973%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132193973&rft_id=info:pmid/&rfr_iscdi=true