A model for the viscous dissipation rate in stably stratified, sheared turbulence
A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on th...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2013-07, Vol.40 (14), p.3744-3749 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3749 |
---|---|
container_issue | 14 |
container_start_page | 3744 |
container_title | Geophysical research letters |
container_volume | 40 |
creator | Fossum, H. E. Wingstedt, E. M. M. Reif, B. A. P. |
description | A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies.
Key Points
A dissipation rate model is developed and validated using DNS data
The functional form of the model is derived from first principles
The proposed model performs very well in strongly stratified turbulence |
doi_str_mv | 10.1002/grl.50663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_48619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545496531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</originalsourceid><addsrcrecordid>eNp1kV9LHDEUxUNpoVvbBz9BA1Kw4OhNMvkzjyK6FhZLpeK-hUySqdHszJrMtN1vb3TVh0Kfbgi_c-499yK0S-CQANCjXykechCCvUEz0tR1pQDkWzQDaMqbSvEefcj5FgAYMDJDP47xanA-4m5IeLzx-HfIdpgydiHnsDZjGHqczOhx6HEeTRs3pZSP0AXvDnC-8SZ5h8cptVP0vfUf0bvOxOw_PdcddHV2-vPkvFp8n387OV5UtuaSVaKm0kkQTHROca8U8wpaYoyraUOtM9A4TohoO0oI5dJaYG3bOsalAkFatoM-b31tCnkMve6HZDQBxamulSBNIfa3xDoN95PPo16VcD5G0_sSURNOm6ZWDX1E9_5Bb4cp9WV-TcqkwGqioFBfX1oOOSff6XUKK5M2pa1-XL8u69dP6y_sl2dHk62JXTK9DflVUC6hCFekcEdb7k-IfvN_Qz2_XLw4V1tFie3_vipMutNCMsn19cVcy-vlGb-8WOolewAP9Z__</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642034180</pqid></control><display><type>article</type><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>NORA - Norwegian Open Research Archives</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</creator><creatorcontrib>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</creatorcontrib><description>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies.
Key Points
A dissipation rate model is developed and validated using DNS data
The functional form of the model is derived from first principles
The proposed model performs very well in strongly stratified turbulence</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50663</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Assessments ; Coefficients ; Computational fluid dynamics ; Direct numerical simulation ; Dissipation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid flow ; Isotropy ; Kelvin-Helmholtz ; Mathematical models ; Stratification ; Turbulence ; Turbulent flow ; Velocity ; Viscous dissipation model</subject><ispartof>Geophysical research letters, 2013-07, Vol.40 (14), p.3744-3749</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</citedby><cites>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,26544,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27681581$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fossum, H. E.</creatorcontrib><creatorcontrib>Wingstedt, E. M. M.</creatorcontrib><creatorcontrib>Reif, B. A. P.</creatorcontrib><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies.
Key Points
A dissipation rate model is developed and validated using DNS data
The functional form of the model is derived from first principles
The proposed model performs very well in strongly stratified turbulence</description><subject>Assessments</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Dissipation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Isotropy</subject><subject>Kelvin-Helmholtz</subject><subject>Mathematical models</subject><subject>Stratification</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscous dissipation model</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp1kV9LHDEUxUNpoVvbBz9BA1Kw4OhNMvkzjyK6FhZLpeK-hUySqdHszJrMtN1vb3TVh0Kfbgi_c-499yK0S-CQANCjXykechCCvUEz0tR1pQDkWzQDaMqbSvEefcj5FgAYMDJDP47xanA-4m5IeLzx-HfIdpgydiHnsDZjGHqczOhx6HEeTRs3pZSP0AXvDnC-8SZ5h8cptVP0vfUf0bvOxOw_PdcddHV2-vPkvFp8n387OV5UtuaSVaKm0kkQTHROca8U8wpaYoyraUOtM9A4TohoO0oI5dJaYG3bOsalAkFatoM-b31tCnkMve6HZDQBxamulSBNIfa3xDoN95PPo16VcD5G0_sSURNOm6ZWDX1E9_5Bb4cp9WV-TcqkwGqioFBfX1oOOSff6XUKK5M2pa1-XL8u69dP6y_sl2dHk62JXTK9DflVUC6hCFekcEdb7k-IfvN_Qz2_XLw4V1tFie3_vipMutNCMsn19cVcy-vlGb-8WOolewAP9Z__</recordid><startdate>20130728</startdate><enddate>20130728</enddate><creator>Fossum, H. E.</creator><creator>Wingstedt, E. M. M.</creator><creator>Reif, B. A. P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope></search><sort><creationdate>20130728</creationdate><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><author>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Dissipation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Isotropy</topic><topic>Kelvin-Helmholtz</topic><topic>Mathematical models</topic><topic>Stratification</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscous dissipation model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fossum, H. E.</creatorcontrib><creatorcontrib>Wingstedt, E. M. M.</creatorcontrib><creatorcontrib>Reif, B. A. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fossum, H. E.</au><au>Wingstedt, E. M. M.</au><au>Reif, B. A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for the viscous dissipation rate in stably stratified, sheared turbulence</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-07-28</date><risdate>2013</risdate><volume>40</volume><issue>14</issue><spage>3744</spage><epage>3749</epage><pages>3744-3749</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies.
Key Points
A dissipation rate model is developed and validated using DNS data
The functional form of the model is derived from first principles
The proposed model performs very well in strongly stratified turbulence</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50663</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2013-07, Vol.40 (14), p.3744-3749 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_cristin_nora_10852_48619 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; NORA - Norwegian Open Research Archives; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Assessments Coefficients Computational fluid dynamics Direct numerical simulation Dissipation Earth sciences Earth, ocean, space Exact sciences and technology Fluid flow Isotropy Kelvin-Helmholtz Mathematical models Stratification Turbulence Turbulent flow Velocity Viscous dissipation model |
title | A model for the viscous dissipation rate in stably stratified, sheared turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20the%20viscous%20dissipation%20rate%20in%20stably%20stratified,%20sheared%20turbulence&rft.jtitle=Geophysical%20research%20letters&rft.au=Fossum,%20H.%20E.&rft.date=2013-07-28&rft.volume=40&rft.issue=14&rft.spage=3744&rft.epage=3749&rft.pages=3744-3749&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1002/grl.50663&rft_dat=%3Cproquest_crist%3E3545496531%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642034180&rft_id=info:pmid/&rfr_iscdi=true |