A model for the viscous dissipation rate in stably stratified, sheared turbulence

A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2013-07, Vol.40 (14), p.3744-3749
Hauptverfasser: Fossum, H. E., Wingstedt, E. M. M., Reif, B. A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3749
container_issue 14
container_start_page 3744
container_title Geophysical research letters
container_volume 40
creator Fossum, H. E.
Wingstedt, E. M. M.
Reif, B. A. P.
description A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies. Key Points A dissipation rate model is developed and validated using DNS data The functional form of the model is derived from first principles The proposed model performs very well in strongly stratified turbulence
doi_str_mv 10.1002/grl.50663
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_48619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545496531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</originalsourceid><addsrcrecordid>eNp1kV9LHDEUxUNpoVvbBz9BA1Kw4OhNMvkzjyK6FhZLpeK-hUySqdHszJrMtN1vb3TVh0Kfbgi_c-499yK0S-CQANCjXykechCCvUEz0tR1pQDkWzQDaMqbSvEefcj5FgAYMDJDP47xanA-4m5IeLzx-HfIdpgydiHnsDZjGHqczOhx6HEeTRs3pZSP0AXvDnC-8SZ5h8cptVP0vfUf0bvOxOw_PdcddHV2-vPkvFp8n387OV5UtuaSVaKm0kkQTHROca8U8wpaYoyraUOtM9A4TohoO0oI5dJaYG3bOsalAkFatoM-b31tCnkMve6HZDQBxamulSBNIfa3xDoN95PPo16VcD5G0_sSURNOm6ZWDX1E9_5Bb4cp9WV-TcqkwGqioFBfX1oOOSff6XUKK5M2pa1-XL8u69dP6y_sl2dHk62JXTK9DflVUC6hCFekcEdb7k-IfvN_Qz2_XLw4V1tFie3_vipMutNCMsn19cVcy-vlGb-8WOolewAP9Z__</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642034180</pqid></control><display><type>article</type><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>NORA - Norwegian Open Research Archives</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</creator><creatorcontrib>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</creatorcontrib><description>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies. Key Points A dissipation rate model is developed and validated using DNS data The functional form of the model is derived from first principles The proposed model performs very well in strongly stratified turbulence</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/grl.50663</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Assessments ; Coefficients ; Computational fluid dynamics ; Direct numerical simulation ; Dissipation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid flow ; Isotropy ; Kelvin-Helmholtz ; Mathematical models ; Stratification ; Turbulence ; Turbulent flow ; Velocity ; Viscous dissipation model</subject><ispartof>Geophysical research letters, 2013-07, Vol.40 (14), p.3744-3749</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2014 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</citedby><cites>FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgrl.50663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgrl.50663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,26544,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27681581$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fossum, H. E.</creatorcontrib><creatorcontrib>Wingstedt, E. M. M.</creatorcontrib><creatorcontrib>Reif, B. A. P.</creatorcontrib><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies. Key Points A dissipation rate model is developed and validated using DNS data The functional form of the model is derived from first principles The proposed model performs very well in strongly stratified turbulence</description><subject>Assessments</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Direct numerical simulation</subject><subject>Dissipation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Isotropy</subject><subject>Kelvin-Helmholtz</subject><subject>Mathematical models</subject><subject>Stratification</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Viscous dissipation model</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp1kV9LHDEUxUNpoVvbBz9BA1Kw4OhNMvkzjyK6FhZLpeK-hUySqdHszJrMtN1vb3TVh0Kfbgi_c-499yK0S-CQANCjXykechCCvUEz0tR1pQDkWzQDaMqbSvEefcj5FgAYMDJDP47xanA-4m5IeLzx-HfIdpgydiHnsDZjGHqczOhx6HEeTRs3pZSP0AXvDnC-8SZ5h8cptVP0vfUf0bvOxOw_PdcddHV2-vPkvFp8n387OV5UtuaSVaKm0kkQTHROca8U8wpaYoyraUOtM9A4TohoO0oI5dJaYG3bOsalAkFatoM-b31tCnkMve6HZDQBxamulSBNIfa3xDoN95PPo16VcD5G0_sSURNOm6ZWDX1E9_5Bb4cp9WV-TcqkwGqioFBfX1oOOSff6XUKK5M2pa1-XL8u69dP6y_sl2dHk62JXTK9DflVUC6hCFekcEdb7k-IfvN_Qz2_XLw4V1tFie3_vipMutNCMsn19cVcy-vlGb-8WOolewAP9Z__</recordid><startdate>20130728</startdate><enddate>20130728</enddate><creator>Fossum, H. E.</creator><creator>Wingstedt, E. M. M.</creator><creator>Reif, B. A. P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope></search><sort><creationdate>20130728</creationdate><title>A model for the viscous dissipation rate in stably stratified, sheared turbulence</title><author>Fossum, H. E. ; Wingstedt, E. M. M. ; Reif, B. A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4573-6427d70636fd85e883e80b1aad4292cda09d5116bf211257cc03bbbd3578061b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Assessments</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Direct numerical simulation</topic><topic>Dissipation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Isotropy</topic><topic>Kelvin-Helmholtz</topic><topic>Mathematical models</topic><topic>Stratification</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Viscous dissipation model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fossum, H. E.</creatorcontrib><creatorcontrib>Wingstedt, E. M. M.</creatorcontrib><creatorcontrib>Reif, B. A. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fossum, H. E.</au><au>Wingstedt, E. M. M.</au><au>Reif, B. A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for the viscous dissipation rate in stably stratified, sheared turbulence</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2013-07-28</date><risdate>2013</risdate><volume>40</volume><issue>14</issue><spage>3744</spage><epage>3749</epage><pages>3744-3749</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>A model for the turbulence dissipation rate in stably stratified shear turbulence is developed and validated. The functional dependence of the model is derived from first principles and it represents a conceptually new approach in that it depends on the background temperature field rather than on the fluctuating velocity field. This novel feature makes the proposed model a viable candidate for dissipation rate estimates in measured real‐life flows. Direct numerical simulation data are used for a priori assessment of the proposed model. It is demonstrated that the proposed model performs very well, particularly in cases where the background stratification becomes dynamically important. Also, a generalized expression for the mixing coefficient has been rigorously derived from first principles assuming local isotropy of incompressible turbulent flows. The mixing coefficient is shown to depend on the Prandtl number and values are in correspondence with previous studies. Key Points A dissipation rate model is developed and validated using DNS data The functional form of the model is derived from first principles The proposed model performs very well in strongly stratified turbulence</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/grl.50663</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2013-07, Vol.40 (14), p.3744-3749
issn 0094-8276
1944-8007
language eng
recordid cdi_cristin_nora_10852_48619
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; NORA - Norwegian Open Research Archives; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Assessments
Coefficients
Computational fluid dynamics
Direct numerical simulation
Dissipation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fluid flow
Isotropy
Kelvin-Helmholtz
Mathematical models
Stratification
Turbulence
Turbulent flow
Velocity
Viscous dissipation model
title A model for the viscous dissipation rate in stably stratified, sheared turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20the%20viscous%20dissipation%20rate%20in%20stably%20stratified,%20sheared%20turbulence&rft.jtitle=Geophysical%20research%20letters&rft.au=Fossum,%20H.%20E.&rft.date=2013-07-28&rft.volume=40&rft.issue=14&rft.spage=3744&rft.epage=3749&rft.pages=3744-3749&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1002/grl.50663&rft_dat=%3Cproquest_crist%3E3545496531%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642034180&rft_id=info:pmid/&rfr_iscdi=true