Chaospy: An open source tool for designing methods of uncertainty quantification
•Software for modeling uncertainty using Monte Carlo and polynomial chaos expansions.•Used from Python with a programming syntax close to the mathematical theory.•Can equip forward model with uncertainty quantication results from minimal code.•Highly modular software structure, aimed to serve both e...
Gespeichert in:
Veröffentlicht in: | Journal of computational science 2015-11, Vol.11, p.46-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 46 |
container_title | Journal of computational science |
container_volume | 11 |
creator | Feinberg, Jonathan Langtangen, Hans Petter |
description | •Software for modeling uncertainty using Monte Carlo and polynomial chaos expansions.•Used from Python with a programming syntax close to the mathematical theory.•Can equip forward model with uncertainty quantication results from minimal code.•Highly modular software structure, aimed to serve both experts and non-experts.•Software compares favorably in functionality with competing packages.
The paper describes the philosophy, design, functionality, and usage of the Python software toolbox Chaospy for performing uncertainty quantification via polynomial chaos expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages and demonstrates a stronger focus on defining reusable software building blocks that can easily be assembled to construct new, tailored algorithms for uncertainty quantification. For example, a Chaospy user can in a few lines of high-level computer code define custom distributions, polynomials, integration rules, sampling schemes, and statistical metrics for uncertainty analysis. In addition, the software introduces some novel methodological advances, like a framework for computing Rosenblatt transformations and a new approach for creating polynomial chaos expansions with dependent stochastic variables. |
doi_str_mv | 10.1016/j.jocs.2015.08.008 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_48587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877750315300119</els_id><sourcerecordid>S1877750315300119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-93331afeca0b3e38dba34358ac596ce18afc610dc155f707fb41739e74b97ffe3</originalsourceid><addsrcrecordid>eNp9kM9OAyEQh4nRxKb2BbzIC-wKZVlY46Vp_Jc00YOeCcsOLZsWKrAmfXu3qXp0LjOH3zeZ-RC6pqSkhNa3fdkHk8o5obwksiREnqEJlUIUglN6_jcTdolmKfVkLCZlQ9kEvS03OqT94Q4vPA578DiFIRrAOYQttiHiDpJbe-fXeAd5E7qEg8WDNxCzdj4f8OegfXbWGZ1d8FfowuptgtlPn6KPx4f35XOxen16WS5WhWG1zEXDGKPagtGkZcBk12pWMS614U1tgEptTU1JZyjnVhBh24oK1oCo2kZYC2yKbk57TXQpO698iFpRIvlcVZJLMSbmv4mQUgSr9tHtdDyMKXUUp3p1FKeO4hSRahQ3QvcnCMbbvxxElYyD8dvORTBZdcH9h38DdC12_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaospy: An open source tool for designing methods of uncertainty quantification</title><source>NORA - Norwegian Open Research Archives</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Feinberg, Jonathan ; Langtangen, Hans Petter</creator><creatorcontrib>Feinberg, Jonathan ; Langtangen, Hans Petter</creatorcontrib><description>•Software for modeling uncertainty using Monte Carlo and polynomial chaos expansions.•Used from Python with a programming syntax close to the mathematical theory.•Can equip forward model with uncertainty quantication results from minimal code.•Highly modular software structure, aimed to serve both experts and non-experts.•Software compares favorably in functionality with competing packages.
The paper describes the philosophy, design, functionality, and usage of the Python software toolbox Chaospy for performing uncertainty quantification via polynomial chaos expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages and demonstrates a stronger focus on defining reusable software building blocks that can easily be assembled to construct new, tailored algorithms for uncertainty quantification. For example, a Chaospy user can in a few lines of high-level computer code define custom distributions, polynomials, integration rules, sampling schemes, and statistical metrics for uncertainty analysis. In addition, the software introduces some novel methodological advances, like a framework for computing Rosenblatt transformations and a new approach for creating polynomial chaos expansions with dependent stochastic variables.</description><identifier>ISSN: 1877-7503</identifier><identifier>EISSN: 1877-7511</identifier><identifier>DOI: 10.1016/j.jocs.2015.08.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Monte Carlo simulation ; Polynomial chaos expansions ; Python package ; Rosenblatt transformations ; Uncertainty quantification</subject><ispartof>Journal of computational science, 2015-11, Vol.11, p.46-57</ispartof><rights>2015 The Authors</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-93331afeca0b3e38dba34358ac596ce18afc610dc155f707fb41739e74b97ffe3</citedby><cites>FETCH-LOGICAL-c368t-93331afeca0b3e38dba34358ac596ce18afc610dc155f707fb41739e74b97ffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jocs.2015.08.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26567,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feinberg, Jonathan</creatorcontrib><creatorcontrib>Langtangen, Hans Petter</creatorcontrib><title>Chaospy: An open source tool for designing methods of uncertainty quantification</title><title>Journal of computational science</title><description>•Software for modeling uncertainty using Monte Carlo and polynomial chaos expansions.•Used from Python with a programming syntax close to the mathematical theory.•Can equip forward model with uncertainty quantication results from minimal code.•Highly modular software structure, aimed to serve both experts and non-experts.•Software compares favorably in functionality with competing packages.
The paper describes the philosophy, design, functionality, and usage of the Python software toolbox Chaospy for performing uncertainty quantification via polynomial chaos expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages and demonstrates a stronger focus on defining reusable software building blocks that can easily be assembled to construct new, tailored algorithms for uncertainty quantification. For example, a Chaospy user can in a few lines of high-level computer code define custom distributions, polynomials, integration rules, sampling schemes, and statistical metrics for uncertainty analysis. In addition, the software introduces some novel methodological advances, like a framework for computing Rosenblatt transformations and a new approach for creating polynomial chaos expansions with dependent stochastic variables.</description><subject>Monte Carlo simulation</subject><subject>Polynomial chaos expansions</subject><subject>Python package</subject><subject>Rosenblatt transformations</subject><subject>Uncertainty quantification</subject><issn>1877-7503</issn><issn>1877-7511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kM9OAyEQh4nRxKb2BbzIC-wKZVlY46Vp_Jc00YOeCcsOLZsWKrAmfXu3qXp0LjOH3zeZ-RC6pqSkhNa3fdkHk8o5obwksiREnqEJlUIUglN6_jcTdolmKfVkLCZlQ9kEvS03OqT94Q4vPA578DiFIRrAOYQttiHiDpJbe-fXeAd5E7qEg8WDNxCzdj4f8OegfXbWGZ1d8FfowuptgtlPn6KPx4f35XOxen16WS5WhWG1zEXDGKPagtGkZcBk12pWMS614U1tgEptTU1JZyjnVhBh24oK1oCo2kZYC2yKbk57TXQpO698iFpRIvlcVZJLMSbmv4mQUgSr9tHtdDyMKXUUp3p1FKeO4hSRahQ3QvcnCMbbvxxElYyD8dvORTBZdcH9h38DdC12_w</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Feinberg, Jonathan</creator><creator>Langtangen, Hans Petter</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20151101</creationdate><title>Chaospy: An open source tool for designing methods of uncertainty quantification</title><author>Feinberg, Jonathan ; Langtangen, Hans Petter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-93331afeca0b3e38dba34358ac596ce18afc610dc155f707fb41739e74b97ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Monte Carlo simulation</topic><topic>Polynomial chaos expansions</topic><topic>Python package</topic><topic>Rosenblatt transformations</topic><topic>Uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Jonathan</creatorcontrib><creatorcontrib>Langtangen, Hans Petter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal of computational science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Jonathan</au><au>Langtangen, Hans Petter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaospy: An open source tool for designing methods of uncertainty quantification</atitle><jtitle>Journal of computational science</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>11</volume><spage>46</spage><epage>57</epage><pages>46-57</pages><issn>1877-7503</issn><eissn>1877-7511</eissn><abstract>•Software for modeling uncertainty using Monte Carlo and polynomial chaos expansions.•Used from Python with a programming syntax close to the mathematical theory.•Can equip forward model with uncertainty quantication results from minimal code.•Highly modular software structure, aimed to serve both experts and non-experts.•Software compares favorably in functionality with competing packages.
The paper describes the philosophy, design, functionality, and usage of the Python software toolbox Chaospy for performing uncertainty quantification via polynomial chaos expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages and demonstrates a stronger focus on defining reusable software building blocks that can easily be assembled to construct new, tailored algorithms for uncertainty quantification. For example, a Chaospy user can in a few lines of high-level computer code define custom distributions, polynomials, integration rules, sampling schemes, and statistical metrics for uncertainty analysis. In addition, the software introduces some novel methodological advances, like a framework for computing Rosenblatt transformations and a new approach for creating polynomial chaos expansions with dependent stochastic variables.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jocs.2015.08.008</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-7503 |
ispartof | Journal of computational science, 2015-11, Vol.11, p.46-57 |
issn | 1877-7503 1877-7511 |
language | eng |
recordid | cdi_cristin_nora_10852_48587 |
source | NORA - Norwegian Open Research Archives; Elsevier ScienceDirect Journals Complete |
subjects | Monte Carlo simulation Polynomial chaos expansions Python package Rosenblatt transformations Uncertainty quantification |
title | Chaospy: An open source tool for designing methods of uncertainty quantification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaospy:%20An%20open%20source%20tool%20for%20designing%20methods%20of%20uncertainty%20quantification&rft.jtitle=Journal%20of%20computational%20science&rft.au=Feinberg,%20Jonathan&rft.date=2015-11-01&rft.volume=11&rft.spage=46&rft.epage=57&rft.pages=46-57&rft.issn=1877-7503&rft.eissn=1877-7511&rft_id=info:doi/10.1016/j.jocs.2015.08.008&rft_dat=%3Celsevier_crist%3ES1877750315300119%3C/elsevier_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1877750315300119&rfr_iscdi=true |