Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter

We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0   and a hadronic copper-scintillating-fiber calo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2024-07, Vol.19 (7), p.P07006
Hauptverfasser: Aehle, M., Alme, J., Arata, C., Arsene, I., Bearden, I., Bodova, T., Borshchov, V., Bourrion, O., Bregant, M., van den Brink, A., Buchakchiev, V., Buhl, A., Chujo, T., Dufke, L., Eikeland, V., Fasel, M., Gauger, N., Gautam, A., Ghimouz, A., Goto, Y., Guernane, R., Hachiya, T., Hassan, H., He, L., Helstrup, H., Huhta, L., Inaba, M., Inukai, T., Isidori, T., Jonas, F., Kawaguchi, T., Keidel, R., Kim, M.H., Kozhuharov, V., Kumaoka, T., Kusch, L., Loizides, C., Melikyan, Y., Miake, Y., Minafra, N., Nystrand, J., Novitzky, N., Økland, T., Oyama, K., Park, H., Park, J., Pascal, I., Peitzmann, T., Protsenko, M., Räsänen, S.S., Rarbi, F., Rauch, M., Rehman, A., Richter, M., Röhrich, D., Røed, K., Rusu, A., Rytkönen, H., Sakai, S., Sato, K., Schilling, A., Shimizu, S., Shimomura, M., Simeonov, R., Solheim, E., Sugitate, T., Tambave, G., Tapia Takaki, D., Tourres, D., Tymchuk, I., Yi, J., Yin, Z., Ullaland, K., Yang, S., Yokoo, T., Zhou, D., Zillien, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page P07006
container_title Journal of instrumentation
container_volume 19
creator Aehle, M.
Alme, J.
Arata, C.
Arsene, I.
Bearden, I.
Bodova, T.
Borshchov, V.
Bourrion, O.
Bregant, M.
van den Brink, A.
Buchakchiev, V.
Buhl, A.
Chujo, T.
Dufke, L.
Eikeland, V.
Fasel, M.
Gauger, N.
Gautam, A.
Ghimouz, A.
Goto, Y.
Guernane, R.
Hachiya, T.
Hassan, H.
He, L.
Helstrup, H.
Huhta, L.
Inaba, M.
Inukai, T.
Isidori, T.
Jonas, F.
Kawaguchi, T.
Keidel, R.
Kim, M.H.
Kozhuharov, V.
Kumaoka, T.
Kusch, L.
Loizides, C.
Melikyan, Y.
Miake, Y.
Minafra, N.
Nystrand, J.
Novitzky, N.
Økland, T.
Oyama, K.
Park, H.
Park, J.
Pascal, I.
Peitzmann, T.
Protsenko, M.
Räsänen, S.S.
Rarbi, F.
Rauch, M.
Rehman, A.
Richter, M.
Röhrich, D.
Røed, K.
Rusu, A.
Rytkönen, H.
Sakai, S.
Sato, K.
Schilling, A.
Shimizu, S.
Shimomura, M.
Simeonov, R.
Solheim, E.
Sugitate, T.
Tambave, G.
Tapia Takaki, D.
Tourres, D.
Tymchuk, I.
Yi, J.
Yin, Z.
Ullaland, K.
Yang, S.
Yokoo, T.
Zhou, D.
Zillien, S.
description We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0   and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of about 5 λ int . The data were taken in various test beam campaigns between 2021 and 2023 at the CERN PS and SPS beam lines with hadron beams up to energies of 350 GeV, and electron beams up to 300 GeV. Regarding FoCal-E, we report a comprehensive analysis of its response to minimum ionizing particles across all pad layers, employing various operational modes including different pre-amplifier and bias voltage settings. The longitudinal shower profile of electromagnetic showers is measured with a layer-wise segmentation of 1 X 0 . As a projection to the performance of the final detector in electromagnetic showers, we demonstrate linearity in the full energy range, and show that the energy resolution fulfills the requirements for the physics needs. Additionally, the performance to separate two-showers events was studied by quantifying the transverse shower width. Regarding FoCal-H, we report a detailed analysis of the response to hadron beams between 60 and 350 GeV. The results are compared to simulations obtained with a Geant4 model of the test beam setup, which in particular for FoCal-E are in good agreement with the data. The energy resolution of FoCal-E was found to be lower than 3% at energies larger than 100 GeV. The response of FoCal-H to hadron beams was found to be linear, albeit with a significant intercept that is about factor 2 larger than in simulations. Its resolution, which is non-Gaussian and generally larger than in simulations, was quantified using the FWHM, and decreases from about 16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which is particularly evident at low hadron energies, needs to be further investigated.
doi_str_mv 10.1088/1748-0221/19/07/P07006
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_115632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076284721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRsFa_ggR8Ulj3JpNMMo_L0trCQvtQn8OdzJ3uLLvJmKRKv70ZxtY-CD7l3--cwz2pqo8cvnIwZs21NCsQgq95uwa9vgUN0Lyqzp4fXr_Yv63epXQAUK2ScFa5W4pDiCf0jlgYWN4ToyO5HMMJ7z3l0TH0PdtjH4MvhymGHPLjRCzR_Yl8Tk-yze56e8EuQ_yFsWdbPIY4nihTfF-9GfCY6MOf9bz6fnlxt71a7W6-XW83u5WTXOWVQi47lJ3sREuArm1MPVBb18MAhNypBpRSnZJG6RrRoGsMSC4ctH2nEerz6vPiu8ejnUo4xkcbcLRXm52d70DWYLTQP3lh2cK6OKY8eutDRFv6VMJyrppaFOTTgpSRfzxQyvYQHqIvE9gadCOM1GI2ap6MQkqRhudkDrOfsXP1dq7e8taCtsv_FOGXRTiG6a_zYfQl6CVop34osPgH_J-E38lungU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076284721</pqid></control><display><type>article</type><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><source>NORA - Norwegian Open Research Archives</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</creator><creatorcontrib>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</creatorcontrib><description>We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0   and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of about 5 λ int . The data were taken in various test beam campaigns between 2021 and 2023 at the CERN PS and SPS beam lines with hadron beams up to energies of 350 GeV, and electron beams up to 300 GeV. Regarding FoCal-E, we report a comprehensive analysis of its response to minimum ionizing particles across all pad layers, employing various operational modes including different pre-amplifier and bias voltage settings. The longitudinal shower profile of electromagnetic showers is measured with a layer-wise segmentation of 1 X 0 . As a projection to the performance of the final detector in electromagnetic showers, we demonstrate linearity in the full energy range, and show that the energy resolution fulfills the requirements for the physics needs. Additionally, the performance to separate two-showers events was studied by quantifying the transverse shower width. Regarding FoCal-H, we report a detailed analysis of the response to hadron beams between 60 and 350 GeV. The results are compared to simulations obtained with a Geant4 model of the test beam setup, which in particular for FoCal-E are in good agreement with the data. The energy resolution of FoCal-E was found to be lower than 3% at energies larger than 100 GeV. The response of FoCal-H to hadron beams was found to be linear, albeit with a significant intercept that is about factor 2 larger than in simulations. Its resolution, which is non-Gaussian and generally larger than in simulations, was quantified using the FWHM, and decreases from about 16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which is particularly evident at low hadron energies, needs to be further investigated.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/07/P07006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calorimeter methods ; Calorimeters ; Energy resolution ; Hadrons ; Instrumentation and Detectors ; Linearity ; Particle beams ; Physics ; Prototypes ; Segmentation ; Showers</subject><ispartof>Journal of instrumentation, 2024-07, Vol.19 (7), p.P07006</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07006/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,26544,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04308727$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aehle, M.</creatorcontrib><creatorcontrib>Alme, J.</creatorcontrib><creatorcontrib>Arata, C.</creatorcontrib><creatorcontrib>Arsene, I.</creatorcontrib><creatorcontrib>Bearden, I.</creatorcontrib><creatorcontrib>Bodova, T.</creatorcontrib><creatorcontrib>Borshchov, V.</creatorcontrib><creatorcontrib>Bourrion, O.</creatorcontrib><creatorcontrib>Bregant, M.</creatorcontrib><creatorcontrib>van den Brink, A.</creatorcontrib><creatorcontrib>Buchakchiev, V.</creatorcontrib><creatorcontrib>Buhl, A.</creatorcontrib><creatorcontrib>Chujo, T.</creatorcontrib><creatorcontrib>Dufke, L.</creatorcontrib><creatorcontrib>Eikeland, V.</creatorcontrib><creatorcontrib>Fasel, M.</creatorcontrib><creatorcontrib>Gauger, N.</creatorcontrib><creatorcontrib>Gautam, A.</creatorcontrib><creatorcontrib>Ghimouz, A.</creatorcontrib><creatorcontrib>Goto, Y.</creatorcontrib><creatorcontrib>Guernane, R.</creatorcontrib><creatorcontrib>Hachiya, T.</creatorcontrib><creatorcontrib>Hassan, H.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Helstrup, H.</creatorcontrib><creatorcontrib>Huhta, L.</creatorcontrib><creatorcontrib>Inaba, M.</creatorcontrib><creatorcontrib>Inukai, T.</creatorcontrib><creatorcontrib>Isidori, T.</creatorcontrib><creatorcontrib>Jonas, F.</creatorcontrib><creatorcontrib>Kawaguchi, T.</creatorcontrib><creatorcontrib>Keidel, R.</creatorcontrib><creatorcontrib>Kim, M.H.</creatorcontrib><creatorcontrib>Kozhuharov, V.</creatorcontrib><creatorcontrib>Kumaoka, T.</creatorcontrib><creatorcontrib>Kusch, L.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Melikyan, Y.</creatorcontrib><creatorcontrib>Miake, Y.</creatorcontrib><creatorcontrib>Minafra, N.</creatorcontrib><creatorcontrib>Nystrand, J.</creatorcontrib><creatorcontrib>Novitzky, N.</creatorcontrib><creatorcontrib>Økland, T.</creatorcontrib><creatorcontrib>Oyama, K.</creatorcontrib><creatorcontrib>Park, H.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Pascal, I.</creatorcontrib><creatorcontrib>Peitzmann, T.</creatorcontrib><creatorcontrib>Protsenko, M.</creatorcontrib><creatorcontrib>Räsänen, S.S.</creatorcontrib><creatorcontrib>Rarbi, F.</creatorcontrib><creatorcontrib>Rauch, M.</creatorcontrib><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Richter, M.</creatorcontrib><creatorcontrib>Röhrich, D.</creatorcontrib><creatorcontrib>Røed, K.</creatorcontrib><creatorcontrib>Rusu, A.</creatorcontrib><creatorcontrib>Rytkönen, H.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Schilling, A.</creatorcontrib><creatorcontrib>Shimizu, S.</creatorcontrib><creatorcontrib>Shimomura, M.</creatorcontrib><creatorcontrib>Simeonov, R.</creatorcontrib><creatorcontrib>Solheim, E.</creatorcontrib><creatorcontrib>Sugitate, T.</creatorcontrib><creatorcontrib>Tambave, G.</creatorcontrib><creatorcontrib>Tapia Takaki, D.</creatorcontrib><creatorcontrib>Tourres, D.</creatorcontrib><creatorcontrib>Tymchuk, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yin, Z.</creatorcontrib><creatorcontrib>Ullaland, K.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Yokoo, T.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Zillien, S.</creatorcontrib><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0   and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of about 5 λ int . The data were taken in various test beam campaigns between 2021 and 2023 at the CERN PS and SPS beam lines with hadron beams up to energies of 350 GeV, and electron beams up to 300 GeV. Regarding FoCal-E, we report a comprehensive analysis of its response to minimum ionizing particles across all pad layers, employing various operational modes including different pre-amplifier and bias voltage settings. The longitudinal shower profile of electromagnetic showers is measured with a layer-wise segmentation of 1 X 0 . As a projection to the performance of the final detector in electromagnetic showers, we demonstrate linearity in the full energy range, and show that the energy resolution fulfills the requirements for the physics needs. Additionally, the performance to separate two-showers events was studied by quantifying the transverse shower width. Regarding FoCal-H, we report a detailed analysis of the response to hadron beams between 60 and 350 GeV. The results are compared to simulations obtained with a Geant4 model of the test beam setup, which in particular for FoCal-E are in good agreement with the data. The energy resolution of FoCal-E was found to be lower than 3% at energies larger than 100 GeV. The response of FoCal-H to hadron beams was found to be linear, albeit with a significant intercept that is about factor 2 larger than in simulations. Its resolution, which is non-Gaussian and generally larger than in simulations, was quantified using the FWHM, and decreases from about 16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which is particularly evident at low hadron energies, needs to be further investigated.</description><subject>Calorimeter methods</subject><subject>Calorimeters</subject><subject>Energy resolution</subject><subject>Hadrons</subject><subject>Instrumentation and Detectors</subject><subject>Linearity</subject><subject>Particle beams</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Segmentation</subject><subject>Showers</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>3HK</sourceid><recordid>eNqFkV9rFDEUxQdRsFa_ggR8Ulj3JpNMMo_L0trCQvtQn8OdzJ3uLLvJmKRKv70ZxtY-CD7l3--cwz2pqo8cvnIwZs21NCsQgq95uwa9vgUN0Lyqzp4fXr_Yv63epXQAUK2ScFa5W4pDiCf0jlgYWN4ToyO5HMMJ7z3l0TH0PdtjH4MvhymGHPLjRCzR_Yl8Tk-yze56e8EuQ_yFsWdbPIY4nihTfF-9GfCY6MOf9bz6fnlxt71a7W6-XW83u5WTXOWVQi47lJ3sREuArm1MPVBb18MAhNypBpRSnZJG6RrRoGsMSC4ctH2nEerz6vPiu8ejnUo4xkcbcLRXm52d70DWYLTQP3lh2cK6OKY8eutDRFv6VMJyrppaFOTTgpSRfzxQyvYQHqIvE9gadCOM1GI2ap6MQkqRhudkDrOfsXP1dq7e8taCtsv_FOGXRTiG6a_zYfQl6CVop34osPgH_J-E38lungU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Aehle, M.</creator><creator>Alme, J.</creator><creator>Arata, C.</creator><creator>Arsene, I.</creator><creator>Bearden, I.</creator><creator>Bodova, T.</creator><creator>Borshchov, V.</creator><creator>Bourrion, O.</creator><creator>Bregant, M.</creator><creator>van den Brink, A.</creator><creator>Buchakchiev, V.</creator><creator>Buhl, A.</creator><creator>Chujo, T.</creator><creator>Dufke, L.</creator><creator>Eikeland, V.</creator><creator>Fasel, M.</creator><creator>Gauger, N.</creator><creator>Gautam, A.</creator><creator>Ghimouz, A.</creator><creator>Goto, Y.</creator><creator>Guernane, R.</creator><creator>Hachiya, T.</creator><creator>Hassan, H.</creator><creator>He, L.</creator><creator>Helstrup, H.</creator><creator>Huhta, L.</creator><creator>Inaba, M.</creator><creator>Inukai, T.</creator><creator>Isidori, T.</creator><creator>Jonas, F.</creator><creator>Kawaguchi, T.</creator><creator>Keidel, R.</creator><creator>Kim, M.H.</creator><creator>Kozhuharov, V.</creator><creator>Kumaoka, T.</creator><creator>Kusch, L.</creator><creator>Loizides, C.</creator><creator>Melikyan, Y.</creator><creator>Miake, Y.</creator><creator>Minafra, N.</creator><creator>Nystrand, J.</creator><creator>Novitzky, N.</creator><creator>Økland, T.</creator><creator>Oyama, K.</creator><creator>Park, H.</creator><creator>Park, J.</creator><creator>Pascal, I.</creator><creator>Peitzmann, T.</creator><creator>Protsenko, M.</creator><creator>Räsänen, S.S.</creator><creator>Rarbi, F.</creator><creator>Rauch, M.</creator><creator>Rehman, A.</creator><creator>Richter, M.</creator><creator>Röhrich, D.</creator><creator>Røed, K.</creator><creator>Rusu, A.</creator><creator>Rytkönen, H.</creator><creator>Sakai, S.</creator><creator>Sato, K.</creator><creator>Schilling, A.</creator><creator>Shimizu, S.</creator><creator>Shimomura, M.</creator><creator>Simeonov, R.</creator><creator>Solheim, E.</creator><creator>Sugitate, T.</creator><creator>Tambave, G.</creator><creator>Tapia Takaki, D.</creator><creator>Tourres, D.</creator><creator>Tymchuk, I.</creator><creator>Yi, J.</creator><creator>Yin, Z.</creator><creator>Ullaland, K.</creator><creator>Yang, S.</creator><creator>Yokoo, T.</creator><creator>Zhou, D.</creator><creator>Zillien, S.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>3HK</scope><scope>1XC</scope></search><sort><creationdate>20240701</creationdate><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><author>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calorimeter methods</topic><topic>Calorimeters</topic><topic>Energy resolution</topic><topic>Hadrons</topic><topic>Instrumentation and Detectors</topic><topic>Linearity</topic><topic>Particle beams</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Segmentation</topic><topic>Showers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aehle, M.</creatorcontrib><creatorcontrib>Alme, J.</creatorcontrib><creatorcontrib>Arata, C.</creatorcontrib><creatorcontrib>Arsene, I.</creatorcontrib><creatorcontrib>Bearden, I.</creatorcontrib><creatorcontrib>Bodova, T.</creatorcontrib><creatorcontrib>Borshchov, V.</creatorcontrib><creatorcontrib>Bourrion, O.</creatorcontrib><creatorcontrib>Bregant, M.</creatorcontrib><creatorcontrib>van den Brink, A.</creatorcontrib><creatorcontrib>Buchakchiev, V.</creatorcontrib><creatorcontrib>Buhl, A.</creatorcontrib><creatorcontrib>Chujo, T.</creatorcontrib><creatorcontrib>Dufke, L.</creatorcontrib><creatorcontrib>Eikeland, V.</creatorcontrib><creatorcontrib>Fasel, M.</creatorcontrib><creatorcontrib>Gauger, N.</creatorcontrib><creatorcontrib>Gautam, A.</creatorcontrib><creatorcontrib>Ghimouz, A.</creatorcontrib><creatorcontrib>Goto, Y.</creatorcontrib><creatorcontrib>Guernane, R.</creatorcontrib><creatorcontrib>Hachiya, T.</creatorcontrib><creatorcontrib>Hassan, H.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Helstrup, H.</creatorcontrib><creatorcontrib>Huhta, L.</creatorcontrib><creatorcontrib>Inaba, M.</creatorcontrib><creatorcontrib>Inukai, T.</creatorcontrib><creatorcontrib>Isidori, T.</creatorcontrib><creatorcontrib>Jonas, F.</creatorcontrib><creatorcontrib>Kawaguchi, T.</creatorcontrib><creatorcontrib>Keidel, R.</creatorcontrib><creatorcontrib>Kim, M.H.</creatorcontrib><creatorcontrib>Kozhuharov, V.</creatorcontrib><creatorcontrib>Kumaoka, T.</creatorcontrib><creatorcontrib>Kusch, L.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Melikyan, Y.</creatorcontrib><creatorcontrib>Miake, Y.</creatorcontrib><creatorcontrib>Minafra, N.</creatorcontrib><creatorcontrib>Nystrand, J.</creatorcontrib><creatorcontrib>Novitzky, N.</creatorcontrib><creatorcontrib>Økland, T.</creatorcontrib><creatorcontrib>Oyama, K.</creatorcontrib><creatorcontrib>Park, H.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Pascal, I.</creatorcontrib><creatorcontrib>Peitzmann, T.</creatorcontrib><creatorcontrib>Protsenko, M.</creatorcontrib><creatorcontrib>Räsänen, S.S.</creatorcontrib><creatorcontrib>Rarbi, F.</creatorcontrib><creatorcontrib>Rauch, M.</creatorcontrib><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Richter, M.</creatorcontrib><creatorcontrib>Röhrich, D.</creatorcontrib><creatorcontrib>Røed, K.</creatorcontrib><creatorcontrib>Rusu, A.</creatorcontrib><creatorcontrib>Rytkönen, H.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Schilling, A.</creatorcontrib><creatorcontrib>Shimizu, S.</creatorcontrib><creatorcontrib>Shimomura, M.</creatorcontrib><creatorcontrib>Simeonov, R.</creatorcontrib><creatorcontrib>Solheim, E.</creatorcontrib><creatorcontrib>Sugitate, T.</creatorcontrib><creatorcontrib>Tambave, G.</creatorcontrib><creatorcontrib>Tapia Takaki, D.</creatorcontrib><creatorcontrib>Tourres, D.</creatorcontrib><creatorcontrib>Tymchuk, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yin, Z.</creatorcontrib><creatorcontrib>Ullaland, K.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Yokoo, T.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Zillien, S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aehle, M.</au><au>Alme, J.</au><au>Arata, C.</au><au>Arsene, I.</au><au>Bearden, I.</au><au>Bodova, T.</au><au>Borshchov, V.</au><au>Bourrion, O.</au><au>Bregant, M.</au><au>van den Brink, A.</au><au>Buchakchiev, V.</au><au>Buhl, A.</au><au>Chujo, T.</au><au>Dufke, L.</au><au>Eikeland, V.</au><au>Fasel, M.</au><au>Gauger, N.</au><au>Gautam, A.</au><au>Ghimouz, A.</au><au>Goto, Y.</au><au>Guernane, R.</au><au>Hachiya, T.</au><au>Hassan, H.</au><au>He, L.</au><au>Helstrup, H.</au><au>Huhta, L.</au><au>Inaba, M.</au><au>Inukai, T.</au><au>Isidori, T.</au><au>Jonas, F.</au><au>Kawaguchi, T.</au><au>Keidel, R.</au><au>Kim, M.H.</au><au>Kozhuharov, V.</au><au>Kumaoka, T.</au><au>Kusch, L.</au><au>Loizides, C.</au><au>Melikyan, Y.</au><au>Miake, Y.</au><au>Minafra, N.</au><au>Nystrand, J.</au><au>Novitzky, N.</au><au>Økland, T.</au><au>Oyama, K.</au><au>Park, H.</au><au>Park, J.</au><au>Pascal, I.</au><au>Peitzmann, T.</au><au>Protsenko, M.</au><au>Räsänen, S.S.</au><au>Rarbi, F.</au><au>Rauch, M.</au><au>Rehman, A.</au><au>Richter, M.</au><au>Röhrich, D.</au><au>Røed, K.</au><au>Rusu, A.</au><au>Rytkönen, H.</au><au>Sakai, S.</au><au>Sato, K.</au><au>Schilling, A.</au><au>Shimizu, S.</au><au>Shimomura, M.</au><au>Simeonov, R.</au><au>Solheim, E.</au><au>Sugitate, T.</au><au>Tambave, G.</au><au>Tapia Takaki, D.</au><au>Tourres, D.</au><au>Tymchuk, I.</au><au>Yi, J.</au><au>Yin, Z.</au><au>Ullaland, K.</au><au>Yang, S.</au><au>Yokoo, T.</au><au>Zhou, D.</au><au>Zillien, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>P07006</spage><pages>P07006-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0   and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of about 5 λ int . The data were taken in various test beam campaigns between 2021 and 2023 at the CERN PS and SPS beam lines with hadron beams up to energies of 350 GeV, and electron beams up to 300 GeV. Regarding FoCal-E, we report a comprehensive analysis of its response to minimum ionizing particles across all pad layers, employing various operational modes including different pre-amplifier and bias voltage settings. The longitudinal shower profile of electromagnetic showers is measured with a layer-wise segmentation of 1 X 0 . As a projection to the performance of the final detector in electromagnetic showers, we demonstrate linearity in the full energy range, and show that the energy resolution fulfills the requirements for the physics needs. Additionally, the performance to separate two-showers events was studied by quantifying the transverse shower width. Regarding FoCal-H, we report a detailed analysis of the response to hadron beams between 60 and 350 GeV. The results are compared to simulations obtained with a Geant4 model of the test beam setup, which in particular for FoCal-E are in good agreement with the data. The energy resolution of FoCal-E was found to be lower than 3% at energies larger than 100 GeV. The response of FoCal-H to hadron beams was found to be linear, albeit with a significant intercept that is about factor 2 larger than in simulations. Its resolution, which is non-Gaussian and generally larger than in simulations, was quantified using the FWHM, and decreases from about 16% at 100 GeV to about 11% at 350 GeV. The discrepancy to simulations, which is particularly evident at low hadron energies, needs to be further investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/07/P07006</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2024-07, Vol.19 (7), p.P07006
issn 1748-0221
1748-0221
language eng
recordid cdi_cristin_nora_10852_115632
source NORA - Norwegian Open Research Archives; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Calorimeter methods
Calorimeters
Energy resolution
Hadrons
Instrumentation and Detectors
Linearity
Particle beams
Physics
Prototypes
Segmentation
Showers
title Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20electromagnetic%20and%20hadronic%20prototype%20segments%20of%20the%20ALICE%20Forward%20Calorimeter&rft.jtitle=Journal%20of%20instrumentation&rft.au=Aehle,%20M.&rft.date=2024-07-01&rft.volume=19&rft.issue=7&rft.spage=P07006&rft.pages=P07006-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/07/P07006&rft_dat=%3Cproquest_crist%3E3076284721%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076284721&rft_id=info:pmid/&rfr_iscdi=true