Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter
We present the performance of a full-length prototype of the ALICE Forward Calorimeter (FoCal). The detector is composed of a silicon-tungsten electromagnetic sampling calorimeter with longitudinal and transverse segmentation (FoCal-E) of about 20 X 0 and a hadronic copper-scintillating-fiber calo...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2024-07, Vol.19 (7), p.P07006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | P07006 |
container_title | Journal of instrumentation |
container_volume | 19 |
creator | Aehle, M. Alme, J. Arata, C. Arsene, I. Bearden, I. Bodova, T. Borshchov, V. Bourrion, O. Bregant, M. van den Brink, A. Buchakchiev, V. Buhl, A. Chujo, T. Dufke, L. Eikeland, V. Fasel, M. Gauger, N. Gautam, A. Ghimouz, A. Goto, Y. Guernane, R. Hachiya, T. Hassan, H. He, L. Helstrup, H. Huhta, L. Inaba, M. Inukai, T. Isidori, T. Jonas, F. Kawaguchi, T. Keidel, R. Kim, M.H. Kozhuharov, V. Kumaoka, T. Kusch, L. Loizides, C. Melikyan, Y. Miake, Y. Minafra, N. Nystrand, J. Novitzky, N. Økland, T. Oyama, K. Park, H. Park, J. Pascal, I. Peitzmann, T. Protsenko, M. Räsänen, S.S. Rarbi, F. Rauch, M. Rehman, A. Richter, M. Röhrich, D. Røed, K. Rusu, A. Rytkönen, H. Sakai, S. Sato, K. Schilling, A. Shimizu, S. Shimomura, M. Simeonov, R. Solheim, E. Sugitate, T. Tambave, G. Tapia Takaki, D. Tourres, D. Tymchuk, I. Yi, J. Yin, Z. Ullaland, K. Yang, S. Yokoo, T. Zhou, D. Zillien, S. |
description | We present the performance of a full-length prototype of the
ALICE Forward Calorimeter (FoCal). The detector is composed of a
silicon-tungsten electromagnetic sampling calorimeter with
longitudinal and transverse segmentation (FoCal-E) of about 20
X
0
and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of
about 5
λ
int
. The data were taken in various test
beam campaigns between 2021 and 2023 at the CERN PS and SPS beam
lines with hadron beams up to energies of 350 GeV, and electron
beams up to 300 GeV. Regarding FoCal-E, we report a
comprehensive analysis of its response to minimum ionizing particles
across all pad layers, employing various operational modes including
different pre-amplifier and bias voltage settings. The longitudinal
shower profile of electromagnetic showers is measured with a
layer-wise segmentation of 1
X
0
. As a projection to the
performance of the final detector in electromagnetic showers, we
demonstrate linearity in the full energy range, and show that the
energy resolution fulfills the requirements for the physics needs.
Additionally, the performance to separate two-showers events was
studied by quantifying the transverse shower width. Regarding
FoCal-H, we report a detailed analysis of the response to hadron
beams between 60 and 350 GeV. The results are compared to
simulations obtained with a
Geant4
model of the test beam
setup, which in particular for FoCal-E are in good agreement with
the data. The energy resolution of FoCal-E was found to be lower
than 3% at energies larger than 100 GeV. The response of
FoCal-H to hadron beams was found to be linear, albeit with a
significant intercept that is about factor 2 larger than in
simulations. Its resolution, which is non-Gaussian and generally
larger than in simulations, was quantified using the FWHM, and
decreases from about 16% at 100 GeV to about 11% at 350 GeV.
The discrepancy to simulations, which is particularly evident at low
hadron energies, needs to be further investigated. |
doi_str_mv | 10.1088/1748-0221/19/07/P07006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_115632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3076284721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRsFa_ggR8Ulj3JpNMMo_L0trCQvtQn8OdzJ3uLLvJmKRKv70ZxtY-CD7l3--cwz2pqo8cvnIwZs21NCsQgq95uwa9vgUN0Lyqzp4fXr_Yv63epXQAUK2ScFa5W4pDiCf0jlgYWN4ToyO5HMMJ7z3l0TH0PdtjH4MvhymGHPLjRCzR_Yl8Tk-yze56e8EuQ_yFsWdbPIY4nihTfF-9GfCY6MOf9bz6fnlxt71a7W6-XW83u5WTXOWVQi47lJ3sREuArm1MPVBb18MAhNypBpRSnZJG6RrRoGsMSC4ctH2nEerz6vPiu8ejnUo4xkcbcLRXm52d70DWYLTQP3lh2cK6OKY8eutDRFv6VMJyrppaFOTTgpSRfzxQyvYQHqIvE9gadCOM1GI2ap6MQkqRhudkDrOfsXP1dq7e8taCtsv_FOGXRTiG6a_zYfQl6CVop34osPgH_J-E38lungU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076284721</pqid></control><display><type>article</type><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><source>NORA - Norwegian Open Research Archives</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</creator><creatorcontrib>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</creatorcontrib><description>We present the performance of a full-length prototype of the
ALICE Forward Calorimeter (FoCal). The detector is composed of a
silicon-tungsten electromagnetic sampling calorimeter with
longitudinal and transverse segmentation (FoCal-E) of about 20
X
0
and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of
about 5
λ
int
. The data were taken in various test
beam campaigns between 2021 and 2023 at the CERN PS and SPS beam
lines with hadron beams up to energies of 350 GeV, and electron
beams up to 300 GeV. Regarding FoCal-E, we report a
comprehensive analysis of its response to minimum ionizing particles
across all pad layers, employing various operational modes including
different pre-amplifier and bias voltage settings. The longitudinal
shower profile of electromagnetic showers is measured with a
layer-wise segmentation of 1
X
0
. As a projection to the
performance of the final detector in electromagnetic showers, we
demonstrate linearity in the full energy range, and show that the
energy resolution fulfills the requirements for the physics needs.
Additionally, the performance to separate two-showers events was
studied by quantifying the transverse shower width. Regarding
FoCal-H, we report a detailed analysis of the response to hadron
beams between 60 and 350 GeV. The results are compared to
simulations obtained with a
Geant4
model of the test beam
setup, which in particular for FoCal-E are in good agreement with
the data. The energy resolution of FoCal-E was found to be lower
than 3% at energies larger than 100 GeV. The response of
FoCal-H to hadron beams was found to be linear, albeit with a
significant intercept that is about factor 2 larger than in
simulations. Its resolution, which is non-Gaussian and generally
larger than in simulations, was quantified using the FWHM, and
decreases from about 16% at 100 GeV to about 11% at 350 GeV.
The discrepancy to simulations, which is particularly evident at low
hadron energies, needs to be further investigated.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/19/07/P07006</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Calorimeter methods ; Calorimeters ; Energy resolution ; Hadrons ; Instrumentation and Detectors ; Linearity ; Particle beams ; Physics ; Prototypes ; Segmentation ; Showers</subject><ispartof>Journal of instrumentation, 2024-07, Vol.19 (7), p.P07006</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-0221/19/07/P07006/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,26544,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04308727$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aehle, M.</creatorcontrib><creatorcontrib>Alme, J.</creatorcontrib><creatorcontrib>Arata, C.</creatorcontrib><creatorcontrib>Arsene, I.</creatorcontrib><creatorcontrib>Bearden, I.</creatorcontrib><creatorcontrib>Bodova, T.</creatorcontrib><creatorcontrib>Borshchov, V.</creatorcontrib><creatorcontrib>Bourrion, O.</creatorcontrib><creatorcontrib>Bregant, M.</creatorcontrib><creatorcontrib>van den Brink, A.</creatorcontrib><creatorcontrib>Buchakchiev, V.</creatorcontrib><creatorcontrib>Buhl, A.</creatorcontrib><creatorcontrib>Chujo, T.</creatorcontrib><creatorcontrib>Dufke, L.</creatorcontrib><creatorcontrib>Eikeland, V.</creatorcontrib><creatorcontrib>Fasel, M.</creatorcontrib><creatorcontrib>Gauger, N.</creatorcontrib><creatorcontrib>Gautam, A.</creatorcontrib><creatorcontrib>Ghimouz, A.</creatorcontrib><creatorcontrib>Goto, Y.</creatorcontrib><creatorcontrib>Guernane, R.</creatorcontrib><creatorcontrib>Hachiya, T.</creatorcontrib><creatorcontrib>Hassan, H.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Helstrup, H.</creatorcontrib><creatorcontrib>Huhta, L.</creatorcontrib><creatorcontrib>Inaba, M.</creatorcontrib><creatorcontrib>Inukai, T.</creatorcontrib><creatorcontrib>Isidori, T.</creatorcontrib><creatorcontrib>Jonas, F.</creatorcontrib><creatorcontrib>Kawaguchi, T.</creatorcontrib><creatorcontrib>Keidel, R.</creatorcontrib><creatorcontrib>Kim, M.H.</creatorcontrib><creatorcontrib>Kozhuharov, V.</creatorcontrib><creatorcontrib>Kumaoka, T.</creatorcontrib><creatorcontrib>Kusch, L.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Melikyan, Y.</creatorcontrib><creatorcontrib>Miake, Y.</creatorcontrib><creatorcontrib>Minafra, N.</creatorcontrib><creatorcontrib>Nystrand, J.</creatorcontrib><creatorcontrib>Novitzky, N.</creatorcontrib><creatorcontrib>Økland, T.</creatorcontrib><creatorcontrib>Oyama, K.</creatorcontrib><creatorcontrib>Park, H.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Pascal, I.</creatorcontrib><creatorcontrib>Peitzmann, T.</creatorcontrib><creatorcontrib>Protsenko, M.</creatorcontrib><creatorcontrib>Räsänen, S.S.</creatorcontrib><creatorcontrib>Rarbi, F.</creatorcontrib><creatorcontrib>Rauch, M.</creatorcontrib><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Richter, M.</creatorcontrib><creatorcontrib>Röhrich, D.</creatorcontrib><creatorcontrib>Røed, K.</creatorcontrib><creatorcontrib>Rusu, A.</creatorcontrib><creatorcontrib>Rytkönen, H.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Schilling, A.</creatorcontrib><creatorcontrib>Shimizu, S.</creatorcontrib><creatorcontrib>Shimomura, M.</creatorcontrib><creatorcontrib>Simeonov, R.</creatorcontrib><creatorcontrib>Solheim, E.</creatorcontrib><creatorcontrib>Sugitate, T.</creatorcontrib><creatorcontrib>Tambave, G.</creatorcontrib><creatorcontrib>Tapia Takaki, D.</creatorcontrib><creatorcontrib>Tourres, D.</creatorcontrib><creatorcontrib>Tymchuk, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yin, Z.</creatorcontrib><creatorcontrib>Ullaland, K.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Yokoo, T.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Zillien, S.</creatorcontrib><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>We present the performance of a full-length prototype of the
ALICE Forward Calorimeter (FoCal). The detector is composed of a
silicon-tungsten electromagnetic sampling calorimeter with
longitudinal and transverse segmentation (FoCal-E) of about 20
X
0
and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of
about 5
λ
int
. The data were taken in various test
beam campaigns between 2021 and 2023 at the CERN PS and SPS beam
lines with hadron beams up to energies of 350 GeV, and electron
beams up to 300 GeV. Regarding FoCal-E, we report a
comprehensive analysis of its response to minimum ionizing particles
across all pad layers, employing various operational modes including
different pre-amplifier and bias voltage settings. The longitudinal
shower profile of electromagnetic showers is measured with a
layer-wise segmentation of 1
X
0
. As a projection to the
performance of the final detector in electromagnetic showers, we
demonstrate linearity in the full energy range, and show that the
energy resolution fulfills the requirements for the physics needs.
Additionally, the performance to separate two-showers events was
studied by quantifying the transverse shower width. Regarding
FoCal-H, we report a detailed analysis of the response to hadron
beams between 60 and 350 GeV. The results are compared to
simulations obtained with a
Geant4
model of the test beam
setup, which in particular for FoCal-E are in good agreement with
the data. The energy resolution of FoCal-E was found to be lower
than 3% at energies larger than 100 GeV. The response of
FoCal-H to hadron beams was found to be linear, albeit with a
significant intercept that is about factor 2 larger than in
simulations. Its resolution, which is non-Gaussian and generally
larger than in simulations, was quantified using the FWHM, and
decreases from about 16% at 100 GeV to about 11% at 350 GeV.
The discrepancy to simulations, which is particularly evident at low
hadron energies, needs to be further investigated.</description><subject>Calorimeter methods</subject><subject>Calorimeters</subject><subject>Energy resolution</subject><subject>Hadrons</subject><subject>Instrumentation and Detectors</subject><subject>Linearity</subject><subject>Particle beams</subject><subject>Physics</subject><subject>Prototypes</subject><subject>Segmentation</subject><subject>Showers</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>3HK</sourceid><recordid>eNqFkV9rFDEUxQdRsFa_ggR8Ulj3JpNMMo_L0trCQvtQn8OdzJ3uLLvJmKRKv70ZxtY-CD7l3--cwz2pqo8cvnIwZs21NCsQgq95uwa9vgUN0Lyqzp4fXr_Yv63epXQAUK2ScFa5W4pDiCf0jlgYWN4ToyO5HMMJ7z3l0TH0PdtjH4MvhymGHPLjRCzR_Yl8Tk-yze56e8EuQ_yFsWdbPIY4nihTfF-9GfCY6MOf9bz6fnlxt71a7W6-XW83u5WTXOWVQi47lJ3sREuArm1MPVBb18MAhNypBpRSnZJG6RrRoGsMSC4ctH2nEerz6vPiu8ejnUo4xkcbcLRXm52d70DWYLTQP3lh2cK6OKY8eutDRFv6VMJyrppaFOTTgpSRfzxQyvYQHqIvE9gadCOM1GI2ap6MQkqRhudkDrOfsXP1dq7e8taCtsv_FOGXRTiG6a_zYfQl6CVop34osPgH_J-E38lungU</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Aehle, M.</creator><creator>Alme, J.</creator><creator>Arata, C.</creator><creator>Arsene, I.</creator><creator>Bearden, I.</creator><creator>Bodova, T.</creator><creator>Borshchov, V.</creator><creator>Bourrion, O.</creator><creator>Bregant, M.</creator><creator>van den Brink, A.</creator><creator>Buchakchiev, V.</creator><creator>Buhl, A.</creator><creator>Chujo, T.</creator><creator>Dufke, L.</creator><creator>Eikeland, V.</creator><creator>Fasel, M.</creator><creator>Gauger, N.</creator><creator>Gautam, A.</creator><creator>Ghimouz, A.</creator><creator>Goto, Y.</creator><creator>Guernane, R.</creator><creator>Hachiya, T.</creator><creator>Hassan, H.</creator><creator>He, L.</creator><creator>Helstrup, H.</creator><creator>Huhta, L.</creator><creator>Inaba, M.</creator><creator>Inukai, T.</creator><creator>Isidori, T.</creator><creator>Jonas, F.</creator><creator>Kawaguchi, T.</creator><creator>Keidel, R.</creator><creator>Kim, M.H.</creator><creator>Kozhuharov, V.</creator><creator>Kumaoka, T.</creator><creator>Kusch, L.</creator><creator>Loizides, C.</creator><creator>Melikyan, Y.</creator><creator>Miake, Y.</creator><creator>Minafra, N.</creator><creator>Nystrand, J.</creator><creator>Novitzky, N.</creator><creator>Økland, T.</creator><creator>Oyama, K.</creator><creator>Park, H.</creator><creator>Park, J.</creator><creator>Pascal, I.</creator><creator>Peitzmann, T.</creator><creator>Protsenko, M.</creator><creator>Räsänen, S.S.</creator><creator>Rarbi, F.</creator><creator>Rauch, M.</creator><creator>Rehman, A.</creator><creator>Richter, M.</creator><creator>Röhrich, D.</creator><creator>Røed, K.</creator><creator>Rusu, A.</creator><creator>Rytkönen, H.</creator><creator>Sakai, S.</creator><creator>Sato, K.</creator><creator>Schilling, A.</creator><creator>Shimizu, S.</creator><creator>Shimomura, M.</creator><creator>Simeonov, R.</creator><creator>Solheim, E.</creator><creator>Sugitate, T.</creator><creator>Tambave, G.</creator><creator>Tapia Takaki, D.</creator><creator>Tourres, D.</creator><creator>Tymchuk, I.</creator><creator>Yi, J.</creator><creator>Yin, Z.</creator><creator>Ullaland, K.</creator><creator>Yang, S.</creator><creator>Yokoo, T.</creator><creator>Zhou, D.</creator><creator>Zillien, S.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>3HK</scope><scope>1XC</scope></search><sort><creationdate>20240701</creationdate><title>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</title><author>Aehle, M. ; Alme, J. ; Arata, C. ; Arsene, I. ; Bearden, I. ; Bodova, T. ; Borshchov, V. ; Bourrion, O. ; Bregant, M. ; van den Brink, A. ; Buchakchiev, V. ; Buhl, A. ; Chujo, T. ; Dufke, L. ; Eikeland, V. ; Fasel, M. ; Gauger, N. ; Gautam, A. ; Ghimouz, A. ; Goto, Y. ; Guernane, R. ; Hachiya, T. ; Hassan, H. ; He, L. ; Helstrup, H. ; Huhta, L. ; Inaba, M. ; Inukai, T. ; Isidori, T. ; Jonas, F. ; Kawaguchi, T. ; Keidel, R. ; Kim, M.H. ; Kozhuharov, V. ; Kumaoka, T. ; Kusch, L. ; Loizides, C. ; Melikyan, Y. ; Miake, Y. ; Minafra, N. ; Nystrand, J. ; Novitzky, N. ; Økland, T. ; Oyama, K. ; Park, H. ; Park, J. ; Pascal, I. ; Peitzmann, T. ; Protsenko, M. ; Räsänen, S.S. ; Rarbi, F. ; Rauch, M. ; Rehman, A. ; Richter, M. ; Röhrich, D. ; Røed, K. ; Rusu, A. ; Rytkönen, H. ; Sakai, S. ; Sato, K. ; Schilling, A. ; Shimizu, S. ; Shimomura, M. ; Simeonov, R. ; Solheim, E. ; Sugitate, T. ; Tambave, G. ; Tapia Takaki, D. ; Tourres, D. ; Tymchuk, I. ; Yi, J. ; Yin, Z. ; Ullaland, K. ; Yang, S. ; Yokoo, T. ; Zhou, D. ; Zillien, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5a14ba4b4b29e0ac9683fe933ff0ea1c560555b548573aa8ac680412c09db7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calorimeter methods</topic><topic>Calorimeters</topic><topic>Energy resolution</topic><topic>Hadrons</topic><topic>Instrumentation and Detectors</topic><topic>Linearity</topic><topic>Particle beams</topic><topic>Physics</topic><topic>Prototypes</topic><topic>Segmentation</topic><topic>Showers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aehle, M.</creatorcontrib><creatorcontrib>Alme, J.</creatorcontrib><creatorcontrib>Arata, C.</creatorcontrib><creatorcontrib>Arsene, I.</creatorcontrib><creatorcontrib>Bearden, I.</creatorcontrib><creatorcontrib>Bodova, T.</creatorcontrib><creatorcontrib>Borshchov, V.</creatorcontrib><creatorcontrib>Bourrion, O.</creatorcontrib><creatorcontrib>Bregant, M.</creatorcontrib><creatorcontrib>van den Brink, A.</creatorcontrib><creatorcontrib>Buchakchiev, V.</creatorcontrib><creatorcontrib>Buhl, A.</creatorcontrib><creatorcontrib>Chujo, T.</creatorcontrib><creatorcontrib>Dufke, L.</creatorcontrib><creatorcontrib>Eikeland, V.</creatorcontrib><creatorcontrib>Fasel, M.</creatorcontrib><creatorcontrib>Gauger, N.</creatorcontrib><creatorcontrib>Gautam, A.</creatorcontrib><creatorcontrib>Ghimouz, A.</creatorcontrib><creatorcontrib>Goto, Y.</creatorcontrib><creatorcontrib>Guernane, R.</creatorcontrib><creatorcontrib>Hachiya, T.</creatorcontrib><creatorcontrib>Hassan, H.</creatorcontrib><creatorcontrib>He, L.</creatorcontrib><creatorcontrib>Helstrup, H.</creatorcontrib><creatorcontrib>Huhta, L.</creatorcontrib><creatorcontrib>Inaba, M.</creatorcontrib><creatorcontrib>Inukai, T.</creatorcontrib><creatorcontrib>Isidori, T.</creatorcontrib><creatorcontrib>Jonas, F.</creatorcontrib><creatorcontrib>Kawaguchi, T.</creatorcontrib><creatorcontrib>Keidel, R.</creatorcontrib><creatorcontrib>Kim, M.H.</creatorcontrib><creatorcontrib>Kozhuharov, V.</creatorcontrib><creatorcontrib>Kumaoka, T.</creatorcontrib><creatorcontrib>Kusch, L.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Melikyan, Y.</creatorcontrib><creatorcontrib>Miake, Y.</creatorcontrib><creatorcontrib>Minafra, N.</creatorcontrib><creatorcontrib>Nystrand, J.</creatorcontrib><creatorcontrib>Novitzky, N.</creatorcontrib><creatorcontrib>Økland, T.</creatorcontrib><creatorcontrib>Oyama, K.</creatorcontrib><creatorcontrib>Park, H.</creatorcontrib><creatorcontrib>Park, J.</creatorcontrib><creatorcontrib>Pascal, I.</creatorcontrib><creatorcontrib>Peitzmann, T.</creatorcontrib><creatorcontrib>Protsenko, M.</creatorcontrib><creatorcontrib>Räsänen, S.S.</creatorcontrib><creatorcontrib>Rarbi, F.</creatorcontrib><creatorcontrib>Rauch, M.</creatorcontrib><creatorcontrib>Rehman, A.</creatorcontrib><creatorcontrib>Richter, M.</creatorcontrib><creatorcontrib>Röhrich, D.</creatorcontrib><creatorcontrib>Røed, K.</creatorcontrib><creatorcontrib>Rusu, A.</creatorcontrib><creatorcontrib>Rytkönen, H.</creatorcontrib><creatorcontrib>Sakai, S.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Schilling, A.</creatorcontrib><creatorcontrib>Shimizu, S.</creatorcontrib><creatorcontrib>Shimomura, M.</creatorcontrib><creatorcontrib>Simeonov, R.</creatorcontrib><creatorcontrib>Solheim, E.</creatorcontrib><creatorcontrib>Sugitate, T.</creatorcontrib><creatorcontrib>Tambave, G.</creatorcontrib><creatorcontrib>Tapia Takaki, D.</creatorcontrib><creatorcontrib>Tourres, D.</creatorcontrib><creatorcontrib>Tymchuk, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Yin, Z.</creatorcontrib><creatorcontrib>Ullaland, K.</creatorcontrib><creatorcontrib>Yang, S.</creatorcontrib><creatorcontrib>Yokoo, T.</creatorcontrib><creatorcontrib>Zhou, D.</creatorcontrib><creatorcontrib>Zillien, S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aehle, M.</au><au>Alme, J.</au><au>Arata, C.</au><au>Arsene, I.</au><au>Bearden, I.</au><au>Bodova, T.</au><au>Borshchov, V.</au><au>Bourrion, O.</au><au>Bregant, M.</au><au>van den Brink, A.</au><au>Buchakchiev, V.</au><au>Buhl, A.</au><au>Chujo, T.</au><au>Dufke, L.</au><au>Eikeland, V.</au><au>Fasel, M.</au><au>Gauger, N.</au><au>Gautam, A.</au><au>Ghimouz, A.</au><au>Goto, Y.</au><au>Guernane, R.</au><au>Hachiya, T.</au><au>Hassan, H.</au><au>He, L.</au><au>Helstrup, H.</au><au>Huhta, L.</au><au>Inaba, M.</au><au>Inukai, T.</au><au>Isidori, T.</au><au>Jonas, F.</au><au>Kawaguchi, T.</au><au>Keidel, R.</au><au>Kim, M.H.</au><au>Kozhuharov, V.</au><au>Kumaoka, T.</au><au>Kusch, L.</au><au>Loizides, C.</au><au>Melikyan, Y.</au><au>Miake, Y.</au><au>Minafra, N.</au><au>Nystrand, J.</au><au>Novitzky, N.</au><au>Økland, T.</au><au>Oyama, K.</au><au>Park, H.</au><au>Park, J.</au><au>Pascal, I.</au><au>Peitzmann, T.</au><au>Protsenko, M.</au><au>Räsänen, S.S.</au><au>Rarbi, F.</au><au>Rauch, M.</au><au>Rehman, A.</au><au>Richter, M.</au><au>Röhrich, D.</au><au>Røed, K.</au><au>Rusu, A.</au><au>Rytkönen, H.</au><au>Sakai, S.</au><au>Sato, K.</au><au>Schilling, A.</au><au>Shimizu, S.</au><au>Shimomura, M.</au><au>Simeonov, R.</au><au>Solheim, E.</au><au>Sugitate, T.</au><au>Tambave, G.</au><au>Tapia Takaki, D.</au><au>Tourres, D.</au><au>Tymchuk, I.</au><au>Yi, J.</au><au>Yin, Z.</au><au>Ullaland, K.</au><au>Yang, S.</au><au>Yokoo, T.</au><au>Zhou, D.</au><au>Zillien, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>19</volume><issue>7</issue><spage>P07006</spage><pages>P07006-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>We present the performance of a full-length prototype of the
ALICE Forward Calorimeter (FoCal). The detector is composed of a
silicon-tungsten electromagnetic sampling calorimeter with
longitudinal and transverse segmentation (FoCal-E) of about 20
X
0
and a hadronic copper-scintillating-fiber calorimeter (FoCal-H) of
about 5
λ
int
. The data were taken in various test
beam campaigns between 2021 and 2023 at the CERN PS and SPS beam
lines with hadron beams up to energies of 350 GeV, and electron
beams up to 300 GeV. Regarding FoCal-E, we report a
comprehensive analysis of its response to minimum ionizing particles
across all pad layers, employing various operational modes including
different pre-amplifier and bias voltage settings. The longitudinal
shower profile of electromagnetic showers is measured with a
layer-wise segmentation of 1
X
0
. As a projection to the
performance of the final detector in electromagnetic showers, we
demonstrate linearity in the full energy range, and show that the
energy resolution fulfills the requirements for the physics needs.
Additionally, the performance to separate two-showers events was
studied by quantifying the transverse shower width. Regarding
FoCal-H, we report a detailed analysis of the response to hadron
beams between 60 and 350 GeV. The results are compared to
simulations obtained with a
Geant4
model of the test beam
setup, which in particular for FoCal-E are in good agreement with
the data. The energy resolution of FoCal-E was found to be lower
than 3% at energies larger than 100 GeV. The response of
FoCal-H to hadron beams was found to be linear, albeit with a
significant intercept that is about factor 2 larger than in
simulations. Its resolution, which is non-Gaussian and generally
larger than in simulations, was quantified using the FWHM, and
decreases from about 16% at 100 GeV to about 11% at 350 GeV.
The discrepancy to simulations, which is particularly evident at low
hadron energies, needs to be further investigated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/19/07/P07006</doi><tpages>58</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2024-07, Vol.19 (7), p.P07006 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_cristin_nora_10852_115632 |
source | NORA - Norwegian Open Research Archives; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Calorimeter methods Calorimeters Energy resolution Hadrons Instrumentation and Detectors Linearity Particle beams Physics Prototypes Segmentation Showers |
title | Performance of the electromagnetic and hadronic prototype segments of the ALICE Forward Calorimeter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20the%20electromagnetic%20and%20hadronic%20prototype%20segments%20of%20the%20ALICE%20Forward%20Calorimeter&rft.jtitle=Journal%20of%20instrumentation&rft.au=Aehle,%20M.&rft.date=2024-07-01&rft.volume=19&rft.issue=7&rft.spage=P07006&rft.pages=P07006-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/19/07/P07006&rft_dat=%3Cproquest_crist%3E3076284721%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3076284721&rft_id=info:pmid/&rfr_iscdi=true |