A fast and accurate numerical method for the left tail of sums of independent random variables
We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted den...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2024, Vol.34 (6), Article 202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Statistics and computing |
container_volume | 34 |
creator | Ben Rached, Nadhir Hoel, Håkon Meo, Johannes Vincent |
description | We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings. |
doi_str_mv | 10.1007/s11222-024-10514-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_114582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyrCpeUiU2sMVyHJumyqPYDhJ_j0tA7NjMbM49mrkIXQK9BkqLmwjAGCOUCQJUgiDyCC1AFpwAL-QxWtBKUcKhEKfoLMYdpQCKiwV6XWFvYsJmaLCxdgomOTxMvQutNR3uXdqODfZjwGnrcOd8wsm0HR49jlMfD7sdGrd3eQwJh-wZe_xhQmvqzsVzdOJNF93Fz16il7vb5_UD2TzdP65XG2KZqhIxtqqULxlztWICRN2YWtauUQ23yjcFg8pz1YhKVbY0rqYlF76QlTHK5k8oXyI8e21oY2oHPYzBaKClZBpAyJJl5GpG9mF8n1xMejdOYchXaQ5QClVQfqDYr2iMMTiv96HtTfjMMn2oWs9V61y1_q5ayxzicyhmeHhz4U_9T-oLsJh_ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467032</pqid></control><display><type>article</type><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><source>NORA - Norwegian Open Research Archives</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</creator><creatorcontrib>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</creatorcontrib><description>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-024-10514-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Error analysis ; Fast Fourier transformations ; Independent variables ; Iterative methods ; Numerical integration ; Numerical methods ; Original Paper ; Probability and Statistics in Computer Science ; Random variables ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2024, Vol.34 (6), Article 202</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-024-10514-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-024-10514-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,26567,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ben Rached, Nadhir</creatorcontrib><creatorcontrib>Hoel, Håkon</creatorcontrib><creatorcontrib>Meo, Johannes Vincent</creatorcontrib><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Error analysis</subject><subject>Fast Fourier transformations</subject><subject>Independent variables</subject><subject>Iterative methods</subject><subject>Numerical integration</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>3HK</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyrCpeUiU2sMVyHJumyqPYDhJ_j0tA7NjMbM49mrkIXQK9BkqLmwjAGCOUCQJUgiDyCC1AFpwAL-QxWtBKUcKhEKfoLMYdpQCKiwV6XWFvYsJmaLCxdgomOTxMvQutNR3uXdqODfZjwGnrcOd8wsm0HR49jlMfD7sdGrd3eQwJh-wZe_xhQmvqzsVzdOJNF93Fz16il7vb5_UD2TzdP65XG2KZqhIxtqqULxlztWICRN2YWtauUQ23yjcFg8pz1YhKVbY0rqYlF76QlTHK5k8oXyI8e21oY2oHPYzBaKClZBpAyJJl5GpG9mF8n1xMejdOYchXaQ5QClVQfqDYr2iMMTiv96HtTfjMMn2oWs9V61y1_q5ayxzicyhmeHhz4U_9T-oLsJh_ww</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ben Rached, Nadhir</creator><creator>Hoel, Håkon</creator><creator>Meo, Johannes Vincent</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><author>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Error analysis</topic><topic>Fast Fourier transformations</topic><topic>Independent variables</topic><topic>Iterative methods</topic><topic>Numerical integration</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Rached, Nadhir</creatorcontrib><creatorcontrib>Hoel, Håkon</creatorcontrib><creatorcontrib>Meo, Johannes Vincent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Rached, Nadhir</au><au>Hoel, Håkon</au><au>Meo, Johannes Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast and accurate numerical method for the left tail of sums of independent random variables</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2024</date><risdate>2024</risdate><volume>34</volume><issue>6</issue><artnum>202</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-024-10514-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2024, Vol.34 (6), Article 202 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_cristin_nora_10852_114582 |
source | NORA - Norwegian Open Research Archives; SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Error analysis Fast Fourier transformations Independent variables Iterative methods Numerical integration Numerical methods Original Paper Probability and Statistics in Computer Science Random variables Statistical Theory and Methods Statistics and Computing/Statistics Programs |
title | A fast and accurate numerical method for the left tail of sums of independent random variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20and%20accurate%20numerical%20method%20for%20the%20left%20tail%20of%20sums%20of%20independent%20random%20variables&rft.jtitle=Statistics%20and%20computing&rft.au=Ben%C2%A0Rached,%20Nadhir&rft.date=2024&rft.volume=34&rft.issue=6&rft.artnum=202&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-024-10514-5&rft_dat=%3Cproquest_crist%3E3118467032%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467032&rft_id=info:pmid/&rfr_iscdi=true |