A fast and accurate numerical method for the left tail of sums of independent random variables

We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2024, Vol.34 (6), Article 202
Hauptverfasser: Ben Rached, Nadhir, Hoel, Håkon, Meo, Johannes Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Statistics and computing
container_volume 34
creator Ben Rached, Nadhir
Hoel, Håkon
Meo, Johannes Vincent
description We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.
doi_str_mv 10.1007/s11222-024-10514-5
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_114582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118467032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyrCpeUiU2sMVyHJumyqPYDhJ_j0tA7NjMbM49mrkIXQK9BkqLmwjAGCOUCQJUgiDyCC1AFpwAL-QxWtBKUcKhEKfoLMYdpQCKiwV6XWFvYsJmaLCxdgomOTxMvQutNR3uXdqODfZjwGnrcOd8wsm0HR49jlMfD7sdGrd3eQwJh-wZe_xhQmvqzsVzdOJNF93Fz16il7vb5_UD2TzdP65XG2KZqhIxtqqULxlztWICRN2YWtauUQ23yjcFg8pz1YhKVbY0rqYlF76QlTHK5k8oXyI8e21oY2oHPYzBaKClZBpAyJJl5GpG9mF8n1xMejdOYchXaQ5QClVQfqDYr2iMMTiv96HtTfjMMn2oWs9V61y1_q5ayxzicyhmeHhz4U_9T-oLsJh_ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118467032</pqid></control><display><type>article</type><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><source>NORA - Norwegian Open Research Archives</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</creator><creatorcontrib>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</creatorcontrib><description>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-024-10514-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Error analysis ; Fast Fourier transformations ; Independent variables ; Iterative methods ; Numerical integration ; Numerical methods ; Original Paper ; Probability and Statistics in Computer Science ; Random variables ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2024, Vol.34 (6), Article 202</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-024-10514-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-024-10514-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,26567,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ben Rached, Nadhir</creatorcontrib><creatorcontrib>Hoel, Håkon</creatorcontrib><creatorcontrib>Meo, Johannes Vincent</creatorcontrib><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Error analysis</subject><subject>Fast Fourier transformations</subject><subject>Independent variables</subject><subject>Iterative methods</subject><subject>Numerical integration</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Random variables</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>3HK</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyrCpeUiU2sMVyHJumyqPYDhJ_j0tA7NjMbM49mrkIXQK9BkqLmwjAGCOUCQJUgiDyCC1AFpwAL-QxWtBKUcKhEKfoLMYdpQCKiwV6XWFvYsJmaLCxdgomOTxMvQutNR3uXdqODfZjwGnrcOd8wsm0HR49jlMfD7sdGrd3eQwJh-wZe_xhQmvqzsVzdOJNF93Fz16il7vb5_UD2TzdP65XG2KZqhIxtqqULxlztWICRN2YWtauUQ23yjcFg8pz1YhKVbY0rqYlF76QlTHK5k8oXyI8e21oY2oHPYzBaKClZBpAyJJl5GpG9mF8n1xMejdOYchXaQ5QClVQfqDYr2iMMTiv96HtTfjMMn2oWs9V61y1_q5ayxzicyhmeHhz4U_9T-oLsJh_ww</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ben Rached, Nadhir</creator><creator>Hoel, Håkon</creator><creator>Meo, Johannes Vincent</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>2024</creationdate><title>A fast and accurate numerical method for the left tail of sums of independent random variables</title><author>Ben Rached, Nadhir ; Hoel, Håkon ; Meo, Johannes Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-ac996f822eb62414bdab5bed6d3c6fd7219f36d4969c8aeb0834f759aa6c01103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Error analysis</topic><topic>Fast Fourier transformations</topic><topic>Independent variables</topic><topic>Iterative methods</topic><topic>Numerical integration</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Random variables</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Rached, Nadhir</creatorcontrib><creatorcontrib>Hoel, Håkon</creatorcontrib><creatorcontrib>Meo, Johannes Vincent</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Rached, Nadhir</au><au>Hoel, Håkon</au><au>Meo, Johannes Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast and accurate numerical method for the left tail of sums of independent random variables</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2024</date><risdate>2024</risdate><volume>34</volume><issue>6</issue><artnum>202</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons–Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton–Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency benefits to using FFT, Newton–Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method’s performance and support our theoretical findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-024-10514-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2024, Vol.34 (6), Article 202
issn 0960-3174
1573-1375
language eng
recordid cdi_cristin_nora_10852_114582
source NORA - Norwegian Open Research Archives; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Error analysis
Fast Fourier transformations
Independent variables
Iterative methods
Numerical integration
Numerical methods
Original Paper
Probability and Statistics in Computer Science
Random variables
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
title A fast and accurate numerical method for the left tail of sums of independent random variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20and%20accurate%20numerical%20method%20for%20the%20left%20tail%20of%20sums%20of%20independent%20random%20variables&rft.jtitle=Statistics%20and%20computing&rft.au=Ben%C2%A0Rached,%20Nadhir&rft.date=2024&rft.volume=34&rft.issue=6&rft.artnum=202&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-024-10514-5&rft_dat=%3Cproquest_crist%3E3118467032%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118467032&rft_id=info:pmid/&rfr_iscdi=true