Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables

Infrasound waves generated at Earth’s surface can reach high altitudes before returning to the surface to be recorded by microbarometer array stations. These waves carry information about the propagation medium, in particular temperature and winds in the atmosphere. It is only recently that studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2024-08, Vol.152 (8), p.1883-1902
Hauptverfasser: Amezcua, Javier, Näsholm, Sven Peter, Vera Rodriguez, Ismael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1902
container_issue 8
container_start_page 1883
container_title Monthly weather review
container_volume 152
creator Amezcua, Javier
Näsholm, Sven Peter
Vera Rodriguez, Ismael
description Infrasound waves generated at Earth’s surface can reach high altitudes before returning to the surface to be recorded by microbarometer array stations. These waves carry information about the propagation medium, in particular temperature and winds in the atmosphere. It is only recently that studies on the assimilation of such data into atmospheric models have been published. Intending to advance this line of research, we here use the modulated ensemble transform Kalman filter (METKF)—commonly used in satellite data assimilation—to assimilate infrasound-related observations in order to update a column of three vertically varying variables: temperature and horizontal wind speeds. This includes stratospheric and mesospheric heights, which are otherwise poorly observed. The numerical experiments on synthetic data but with realistic reanalysis product atmospheric specifications (following the observing system simulation experiment paradigm) reveal that a large ensemble is capable of reducing errors, especially for wind speeds in stratospheric heights close to 30–60 km. While using a small ensemble leads to incorrect analysis increments and large estimation errors, the METKF ameliorates this problem and even achieves error reduction from the prior to the posterior mean estimator.
doi_str_mv 10.1175/MWR-D-23-0186.1
format Article
fullrecord <record><control><sourceid>proquest_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_111235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092332819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-f24d88865734c715f78d997272d8e408b7e38af8f2429aa9a9191fb10fc22dd63</originalsourceid><addsrcrecordid>eNo1kUtLBDEQhIMouD7OXgOeo-lkHslRdn2BIuiqx9Azk9HIbLImWWF_hv_YWVdPBc3X1V0UISfAzwDq8vz-9ZHNmJCMg6rOYIdMoBSc8ULLXTLhXNSMV0WxTw5S-uCcV1UhJuT7OTn_Rp8w22Fw2dIZZqQXKbmFGzC74Onctu_efa5sojnQaVg0zlt66_uIKax8Rx-aZOPXL5wojgOkV6thoI-4ZvOI7ebAfejssN33KUd0nj6NkkNavtvoWvqC0WEz2HRE9nockj3-00PyfHU5n96wu4fr2-nFHWsF6Mx6UXRKqaqsZdHWUPa16rSuRS06ZQuumtpKhb0aOaERNWrQ0DfA-1aIrqvkIaFb3za6lJ03PkQ0wFUpDAAIWY7I6RZZxrDJn81HWEU_fmUk10JKoUCP1Pm_UUgp2t4so1tgXI9mZlONGasxMyOk2VRjQP4AXKiB5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092332819</pqid></control><display><type>article</type><title>Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables</title><source>NORA - Norwegian Open Research Archives</source><creator>Amezcua, Javier ; Näsholm, Sven Peter ; Vera Rodriguez, Ismael</creator><creatorcontrib>Amezcua, Javier ; Näsholm, Sven Peter ; Vera Rodriguez, Ismael</creatorcontrib><description>Infrasound waves generated at Earth’s surface can reach high altitudes before returning to the surface to be recorded by microbarometer array stations. These waves carry information about the propagation medium, in particular temperature and winds in the atmosphere. It is only recently that studies on the assimilation of such data into atmospheric models have been published. Intending to advance this line of research, we here use the modulated ensemble transform Kalman filter (METKF)—commonly used in satellite data assimilation—to assimilate infrasound-related observations in order to update a column of three vertically varying variables: temperature and horizontal wind speeds. This includes stratospheric and mesospheric heights, which are otherwise poorly observed. The numerical experiments on synthetic data but with realistic reanalysis product atmospheric specifications (following the observing system simulation experiment paradigm) reveal that a large ensemble is capable of reducing errors, especially for wind speeds in stratospheric heights close to 30–60 km. While using a small ensemble leads to incorrect analysis increments and large estimation errors, the METKF ameliorates this problem and even achieves error reduction from the prior to the posterior mean estimator.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-23-0186.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric models ; Data assimilation ; Data collection ; Datasets ; Earth surface ; Error analysis ; Error reduction ; Estimation errors ; Experiments ; High altitude ; Infrasound ; Kalman filters ; Lower mantle ; Mathematical models ; Medium-range forecasting ; Mesosphere ; Numerical experiments ; Propagation ; Ray tracing ; Satellite data ; Satellite observation ; Satellites ; Stratosphere ; Synthetic data ; Troposphere ; Wave propagation ; Weather forecasting ; Wind ; Wind speed ; Winds</subject><ispartof>Monthly weather review, 2024-08, Vol.152 (8), p.1883-1902</ispartof><rights>Copyright American Meteorological Society 2024</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4952-8354 ; 0000-0001-9107-4002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26544</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/111235$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amezcua, Javier</creatorcontrib><creatorcontrib>Näsholm, Sven Peter</creatorcontrib><creatorcontrib>Vera Rodriguez, Ismael</creatorcontrib><title>Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables</title><title>Monthly weather review</title><description>Infrasound waves generated at Earth’s surface can reach high altitudes before returning to the surface to be recorded by microbarometer array stations. These waves carry information about the propagation medium, in particular temperature and winds in the atmosphere. It is only recently that studies on the assimilation of such data into atmospheric models have been published. Intending to advance this line of research, we here use the modulated ensemble transform Kalman filter (METKF)—commonly used in satellite data assimilation—to assimilate infrasound-related observations in order to update a column of three vertically varying variables: temperature and horizontal wind speeds. This includes stratospheric and mesospheric heights, which are otherwise poorly observed. The numerical experiments on synthetic data but with realistic reanalysis product atmospheric specifications (following the observing system simulation experiment paradigm) reveal that a large ensemble is capable of reducing errors, especially for wind speeds in stratospheric heights close to 30–60 km. While using a small ensemble leads to incorrect analysis increments and large estimation errors, the METKF ameliorates this problem and even achieves error reduction from the prior to the posterior mean estimator.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Earth surface</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Estimation errors</subject><subject>Experiments</subject><subject>High altitude</subject><subject>Infrasound</subject><subject>Kalman filters</subject><subject>Lower mantle</subject><subject>Mathematical models</subject><subject>Medium-range forecasting</subject><subject>Mesosphere</subject><subject>Numerical experiments</subject><subject>Propagation</subject><subject>Ray tracing</subject><subject>Satellite data</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Stratosphere</subject><subject>Synthetic data</subject><subject>Troposphere</subject><subject>Wave propagation</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind speed</subject><subject>Winds</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo1kUtLBDEQhIMouD7OXgOeo-lkHslRdn2BIuiqx9Azk9HIbLImWWF_hv_YWVdPBc3X1V0UISfAzwDq8vz-9ZHNmJCMg6rOYIdMoBSc8ULLXTLhXNSMV0WxTw5S-uCcV1UhJuT7OTn_Rp8w22Fw2dIZZqQXKbmFGzC74Onctu_efa5sojnQaVg0zlt66_uIKax8Rx-aZOPXL5wojgOkV6thoI-4ZvOI7ebAfejssN33KUd0nj6NkkNavtvoWvqC0WEz2HRE9nockj3-00PyfHU5n96wu4fr2-nFHWsF6Mx6UXRKqaqsZdHWUPa16rSuRS06ZQuumtpKhb0aOaERNWrQ0DfA-1aIrqvkIaFb3za6lJ03PkQ0wFUpDAAIWY7I6RZZxrDJn81HWEU_fmUk10JKoUCP1Pm_UUgp2t4so1tgXI9mZlONGasxMyOk2VRjQP4AXKiB5Q</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Amezcua, Javier</creator><creator>Näsholm, Sven Peter</creator><creator>Vera Rodriguez, Ismael</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-4952-8354</orcidid><orcidid>https://orcid.org/0000-0001-9107-4002</orcidid></search><sort><creationdate>20240801</creationdate><title>Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables</title><author>Amezcua, Javier ; Näsholm, Sven Peter ; Vera Rodriguez, Ismael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-f24d88865734c715f78d997272d8e408b7e38af8f2429aa9a9191fb10fc22dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Earth surface</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Estimation errors</topic><topic>Experiments</topic><topic>High altitude</topic><topic>Infrasound</topic><topic>Kalman filters</topic><topic>Lower mantle</topic><topic>Mathematical models</topic><topic>Medium-range forecasting</topic><topic>Mesosphere</topic><topic>Numerical experiments</topic><topic>Propagation</topic><topic>Ray tracing</topic><topic>Satellite data</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Stratosphere</topic><topic>Synthetic data</topic><topic>Troposphere</topic><topic>Wave propagation</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amezcua, Javier</creatorcontrib><creatorcontrib>Näsholm, Sven Peter</creatorcontrib><creatorcontrib>Vera Rodriguez, Ismael</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amezcua, Javier</au><au>Näsholm, Sven Peter</au><au>Vera Rodriguez, Ismael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables</atitle><jtitle>Monthly weather review</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>152</volume><issue>8</issue><spage>1883</spage><epage>1902</epage><pages>1883-1902</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Infrasound waves generated at Earth’s surface can reach high altitudes before returning to the surface to be recorded by microbarometer array stations. These waves carry information about the propagation medium, in particular temperature and winds in the atmosphere. It is only recently that studies on the assimilation of such data into atmospheric models have been published. Intending to advance this line of research, we here use the modulated ensemble transform Kalman filter (METKF)—commonly used in satellite data assimilation—to assimilate infrasound-related observations in order to update a column of three vertically varying variables: temperature and horizontal wind speeds. This includes stratospheric and mesospheric heights, which are otherwise poorly observed. The numerical experiments on synthetic data but with realistic reanalysis product atmospheric specifications (following the observing system simulation experiment paradigm) reveal that a large ensemble is capable of reducing errors, especially for wind speeds in stratospheric heights close to 30–60 km. While using a small ensemble leads to incorrect analysis increments and large estimation errors, the METKF ameliorates this problem and even achieves error reduction from the prior to the posterior mean estimator.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-23-0186.1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4952-8354</orcidid><orcidid>https://orcid.org/0000-0001-9107-4002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2024-08, Vol.152 (8), p.1883-1902
issn 0027-0644
1520-0493
language eng
recordid cdi_cristin_nora_10852_111235
source NORA - Norwegian Open Research Archives
subjects Atmosphere
Atmospheric models
Data assimilation
Data collection
Datasets
Earth surface
Error analysis
Error reduction
Estimation errors
Experiments
High altitude
Infrasound
Kalman filters
Lower mantle
Mathematical models
Medium-range forecasting
Mesosphere
Numerical experiments
Propagation
Ray tracing
Satellite data
Satellite observation
Satellites
Stratosphere
Synthetic data
Troposphere
Wave propagation
Weather forecasting
Wind
Wind speed
Winds
title Using Satellite Data Assimilation Techniques to Combine Infrasound Observations and a Full Ray-Tracing Model to Constrain Stratospheric Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Satellite%20Data%20Assimilation%20Techniques%20to%20Combine%20Infrasound%20Observations%20and%20a%20Full%20Ray-Tracing%20Model%20to%20Constrain%20Stratospheric%20Variables&rft.jtitle=Monthly%20weather%20review&rft.au=Amezcua,%20Javier&rft.date=2024-08-01&rft.volume=152&rft.issue=8&rft.spage=1883&rft.epage=1902&rft.pages=1883-1902&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-23-0186.1&rft_dat=%3Cproquest_3HK%3E3092332819%3C/proquest_3HK%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092332819&rft_id=info:pmid/&rfr_iscdi=true