Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3

Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2023-08, Vol.205, p.244-261
Hauptverfasser: Sánchez-Pérez, Patricia, Mata, Ana, Torp, May-Kristin, López-Bernardo, Elia, Heiestad, Christina M., Aronsen, Jan Magnus, Molina-Iracheta, Antonio, Jiménez-Borreguero, Luis J., García-Roves, Pablo, Costa, Ana S.H., Frezza, Christian, Murphy, Michael P., Stenslokken, Kåre-Olav, Cadenas, Susana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue
container_start_page 244
container_title Free radical biology & medicine
container_volume 205
creator Sánchez-Pérez, Patricia
Mata, Ana
Torp, May-Kristin
López-Bernardo, Elia
Heiestad, Christina M.
Aronsen, Jan Magnus
Molina-Iracheta, Antonio
Jiménez-Borreguero, Luis J.
García-Roves, Pablo
Costa, Ana S.H.
Frezza, Christian
Murphy, Michael P.
Stenslokken, Kåre-Olav
Cadenas, Susana
description Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3–KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3–KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3–KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3–KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3–KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury. [Display omitted] •UCP3 deficiency increases infarct size after in vivo and ex vivo myocardial IR.•UCP3 knockout and wild-type hearts have a similar metabolic response to IR.•S1QEL limits the infarct size in UCP3 knockout hearts after myocardial IR.•Myocardial IR impairs fatty acid oxidation and complex I (but not complex II) activity.•UCP3 deficiency severely affects cardiac mitochondrial ultrastructure after IR.
doi_str_mv 10.1016/j.freeradbiomed.2023.05.014
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_109794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584923004306</els_id><sourcerecordid>2824691574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-114e8cff808cb88effb90d52864d91357cbf8618f9a2688ec740e367a9295dce3</originalsourceid><addsrcrecordid>eNqNkUFvFCEUx4nR2G31KxgSLx6cFWZgBuLJbFZr0kQP9kwYeLSsM7AC09ij31wm2z148wIJ7_f-L48fQm8p2VJC-w-HrUsASdvRxxnstiVttyV8Syh7hjZUDF3DuOyfow0RkjZcMHmBLnM-EEIY78RLdNENreS8kxv0Zx8g3T3ivIy5JF0Az1D0GCef5_d49iWa-xhs8nrCFVhMWRJgHSyOv73VxT_A-g45Y-0KJGx0sl4b7LO5h9nrJsERkluyjwH7UCMN4Embnz7c4dvd9-4VeuH0lOH1032Fbj_vf-yum5tvX77uPt00hvW0NJQyEMY5QYQZhQDnRkksb0XPrKQdH8zoRE-Fk7rta90MjEDXD1rWVa2B7grhU65JPhcfVIhJK0oEb-spB8kq8u6EHFP8tUAuaq5rwDTpAHHJqhUt6yXlw4p-PKfFnBM4dUx-1umxZqlVkzqofzSpVZMiXFVNtfvN06BlXGvn3rOXCuxPANQfefCQVDYeggHrE5iibPT_NegvhRes9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824691574</pqid></control><display><type>article</type><title>Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sánchez-Pérez, Patricia ; Mata, Ana ; Torp, May-Kristin ; López-Bernardo, Elia ; Heiestad, Christina M. ; Aronsen, Jan Magnus ; Molina-Iracheta, Antonio ; Jiménez-Borreguero, Luis J. ; García-Roves, Pablo ; Costa, Ana S.H. ; Frezza, Christian ; Murphy, Michael P. ; Stenslokken, Kåre-Olav ; Cadenas, Susana</creator><creatorcontrib>Sánchez-Pérez, Patricia ; Mata, Ana ; Torp, May-Kristin ; López-Bernardo, Elia ; Heiestad, Christina M. ; Aronsen, Jan Magnus ; Molina-Iracheta, Antonio ; Jiménez-Borreguero, Luis J. ; García-Roves, Pablo ; Costa, Ana S.H. ; Frezza, Christian ; Murphy, Michael P. ; Stenslokken, Kåre-Olav ; Cadenas, Susana</creatorcontrib><description>Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3–KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3–KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3–KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3–KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3–KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury. [Display omitted] •UCP3 deficiency increases infarct size after in vivo and ex vivo myocardial IR.•UCP3 knockout and wild-type hearts have a similar metabolic response to IR.•S1QEL limits the infarct size in UCP3 knockout hearts after myocardial IR.•Myocardial IR impairs fatty acid oxidation and complex I (but not complex II) activity.•UCP3 deficiency severely affects cardiac mitochondrial ultrastructure after IR.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2023.05.014</identifier><identifier>PMID: 37295539</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Coronary Artery Disease - metabolism ; Energy Metabolism ; Fatty Acids - metabolism ; Infarction - complications ; Infarction - metabolism ; Ischemia - metabolism ; Ischemia-reperfusion injury ; Mice ; Mitochondria - metabolism ; Mitochondrial respiration ; Mitochondrial structure ; Myocardial Ischemia - metabolism ; Myocardial Reperfusion Injury - genetics ; Myocardial Reperfusion Injury - metabolism ; Myocytes, Cardiac - metabolism ; Oxidative Stress ; Reperfusion ; Superoxides - metabolism ; UCP3 (uncoupling protein 3)</subject><ispartof>Free radical biology &amp; medicine, 2023-08, Vol.205, p.244-261</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-114e8cff808cb88effb90d52864d91357cbf8618f9a2688ec740e367a9295dce3</citedby><cites>FETCH-LOGICAL-c461t-114e8cff808cb88effb90d52864d91357cbf8618f9a2688ec740e367a9295dce3</cites><orcidid>0000-0003-0726-0369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2023.05.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,26572,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37295539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Pérez, Patricia</creatorcontrib><creatorcontrib>Mata, Ana</creatorcontrib><creatorcontrib>Torp, May-Kristin</creatorcontrib><creatorcontrib>López-Bernardo, Elia</creatorcontrib><creatorcontrib>Heiestad, Christina M.</creatorcontrib><creatorcontrib>Aronsen, Jan Magnus</creatorcontrib><creatorcontrib>Molina-Iracheta, Antonio</creatorcontrib><creatorcontrib>Jiménez-Borreguero, Luis J.</creatorcontrib><creatorcontrib>García-Roves, Pablo</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>Stenslokken, Kåre-Olav</creatorcontrib><creatorcontrib>Cadenas, Susana</creatorcontrib><title>Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3–KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3–KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3–KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3–KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3–KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury. [Display omitted] •UCP3 deficiency increases infarct size after in vivo and ex vivo myocardial IR.•UCP3 knockout and wild-type hearts have a similar metabolic response to IR.•S1QEL limits the infarct size in UCP3 knockout hearts after myocardial IR.•Myocardial IR impairs fatty acid oxidation and complex I (but not complex II) activity.•UCP3 deficiency severely affects cardiac mitochondrial ultrastructure after IR.</description><subject>Animals</subject><subject>Coronary Artery Disease - metabolism</subject><subject>Energy Metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Infarction - complications</subject><subject>Infarction - metabolism</subject><subject>Ischemia - metabolism</subject><subject>Ischemia-reperfusion injury</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial respiration</subject><subject>Mitochondrial structure</subject><subject>Myocardial Ischemia - metabolism</subject><subject>Myocardial Reperfusion Injury - genetics</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Oxidative Stress</subject><subject>Reperfusion</subject><subject>Superoxides - metabolism</subject><subject>UCP3 (uncoupling protein 3)</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNqNkUFvFCEUx4nR2G31KxgSLx6cFWZgBuLJbFZr0kQP9kwYeLSsM7AC09ij31wm2z148wIJ7_f-L48fQm8p2VJC-w-HrUsASdvRxxnstiVttyV8Syh7hjZUDF3DuOyfow0RkjZcMHmBLnM-EEIY78RLdNENreS8kxv0Zx8g3T3ivIy5JF0Az1D0GCef5_d49iWa-xhs8nrCFVhMWRJgHSyOv73VxT_A-g45Y-0KJGx0sl4b7LO5h9nrJsERkluyjwH7UCMN4Embnz7c4dvd9-4VeuH0lOH1032Fbj_vf-yum5tvX77uPt00hvW0NJQyEMY5QYQZhQDnRkksb0XPrKQdH8zoRE-Fk7rta90MjEDXD1rWVa2B7grhU65JPhcfVIhJK0oEb-spB8kq8u6EHFP8tUAuaq5rwDTpAHHJqhUt6yXlw4p-PKfFnBM4dUx-1umxZqlVkzqofzSpVZMiXFVNtfvN06BlXGvn3rOXCuxPANQfefCQVDYeggHrE5iibPT_NegvhRes9w</recordid><startdate>20230820</startdate><enddate>20230820</enddate><creator>Sánchez-Pérez, Patricia</creator><creator>Mata, Ana</creator><creator>Torp, May-Kristin</creator><creator>López-Bernardo, Elia</creator><creator>Heiestad, Christina M.</creator><creator>Aronsen, Jan Magnus</creator><creator>Molina-Iracheta, Antonio</creator><creator>Jiménez-Borreguero, Luis J.</creator><creator>García-Roves, Pablo</creator><creator>Costa, Ana S.H.</creator><creator>Frezza, Christian</creator><creator>Murphy, Michael P.</creator><creator>Stenslokken, Kåre-Olav</creator><creator>Cadenas, Susana</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-0726-0369</orcidid></search><sort><creationdate>20230820</creationdate><title>Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3</title><author>Sánchez-Pérez, Patricia ; Mata, Ana ; Torp, May-Kristin ; López-Bernardo, Elia ; Heiestad, Christina M. ; Aronsen, Jan Magnus ; Molina-Iracheta, Antonio ; Jiménez-Borreguero, Luis J. ; García-Roves, Pablo ; Costa, Ana S.H. ; Frezza, Christian ; Murphy, Michael P. ; Stenslokken, Kåre-Olav ; Cadenas, Susana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-114e8cff808cb88effb90d52864d91357cbf8618f9a2688ec740e367a9295dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Coronary Artery Disease - metabolism</topic><topic>Energy Metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Infarction - complications</topic><topic>Infarction - metabolism</topic><topic>Ischemia - metabolism</topic><topic>Ischemia-reperfusion injury</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial respiration</topic><topic>Mitochondrial structure</topic><topic>Myocardial Ischemia - metabolism</topic><topic>Myocardial Reperfusion Injury - genetics</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Oxidative Stress</topic><topic>Reperfusion</topic><topic>Superoxides - metabolism</topic><topic>UCP3 (uncoupling protein 3)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Pérez, Patricia</creatorcontrib><creatorcontrib>Mata, Ana</creatorcontrib><creatorcontrib>Torp, May-Kristin</creatorcontrib><creatorcontrib>López-Bernardo, Elia</creatorcontrib><creatorcontrib>Heiestad, Christina M.</creatorcontrib><creatorcontrib>Aronsen, Jan Magnus</creatorcontrib><creatorcontrib>Molina-Iracheta, Antonio</creatorcontrib><creatorcontrib>Jiménez-Borreguero, Luis J.</creatorcontrib><creatorcontrib>García-Roves, Pablo</creatorcontrib><creatorcontrib>Costa, Ana S.H.</creatorcontrib><creatorcontrib>Frezza, Christian</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><creatorcontrib>Stenslokken, Kåre-Olav</creatorcontrib><creatorcontrib>Cadenas, Susana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Pérez, Patricia</au><au>Mata, Ana</au><au>Torp, May-Kristin</au><au>López-Bernardo, Elia</au><au>Heiestad, Christina M.</au><au>Aronsen, Jan Magnus</au><au>Molina-Iracheta, Antonio</au><au>Jiménez-Borreguero, Luis J.</au><au>García-Roves, Pablo</au><au>Costa, Ana S.H.</au><au>Frezza, Christian</au><au>Murphy, Michael P.</au><au>Stenslokken, Kåre-Olav</au><au>Cadenas, Susana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2023-08-20</date><risdate>2023</risdate><volume>205</volume><spage>244</spage><epage>261</epage><pages>244-261</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3–KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3–KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3–KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3–KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3–KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury. [Display omitted] •UCP3 deficiency increases infarct size after in vivo and ex vivo myocardial IR.•UCP3 knockout and wild-type hearts have a similar metabolic response to IR.•S1QEL limits the infarct size in UCP3 knockout hearts after myocardial IR.•Myocardial IR impairs fatty acid oxidation and complex I (but not complex II) activity.•UCP3 deficiency severely affects cardiac mitochondrial ultrastructure after IR.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37295539</pmid><doi>10.1016/j.freeradbiomed.2023.05.014</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0726-0369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2023-08, Vol.205, p.244-261
issn 0891-5849
1873-4596
language eng
recordid cdi_cristin_nora_10852_109794
source MEDLINE; NORA - Norwegian Open Research Archives; Access via ScienceDirect (Elsevier)
subjects Animals
Coronary Artery Disease - metabolism
Energy Metabolism
Fatty Acids - metabolism
Infarction - complications
Infarction - metabolism
Ischemia - metabolism
Ischemia-reperfusion injury
Mice
Mitochondria - metabolism
Mitochondrial respiration
Mitochondrial structure
Myocardial Ischemia - metabolism
Myocardial Reperfusion Injury - genetics
Myocardial Reperfusion Injury - metabolism
Myocytes, Cardiac - metabolism
Oxidative Stress
Reperfusion
Superoxides - metabolism
UCP3 (uncoupling protein 3)
title Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20substrate%20metabolism,%20mitochondrial%20structure%20and%20oxidative%20stress%20after%20cardiac%20ischemia-reperfusion%20in%20mice%20lacking%20UCP3&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=S%C3%A1nchez-P%C3%A9rez,%20Patricia&rft.date=2023-08-20&rft.volume=205&rft.spage=244&rft.epage=261&rft.pages=244-261&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2023.05.014&rft_dat=%3Cproquest_crist%3E2824691574%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824691574&rft_id=info:pmid/37295539&rft_els_id=S0891584923004306&rfr_iscdi=true