Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research

Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and education...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Educational psychology review 2024-03, Vol.36 (1), p.19, Article 19
Hauptverfasser: Campos, Diego G., Fütterer, Tim, Gfrörer, Thomas, Lavelle-Hill, Rosa, Murayama, Kou, König, Lars, Hecht, Martin, Zitzmann, Steffen, Scherer, Ronny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 19
container_title Educational psychology review
container_volume 36
creator Campos, Diego G.
Fütterer, Tim
Gfrörer, Thomas
Lavelle-Hill, Rosa
Murayama, Kou
König, Lars
Hecht, Martin
Zitzmann, Steffen
Scherer, Ronny
description Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and educational psychology, and there is a lack of clear information on when researchers should stop the reviewing process. In this study, we conducted a retrospective screening simulation using 27 systematic reviews in education and educational psychology. We evaluated the sensitivity, specificity, and estimated time savings of several learning algorithms and heuristic stopping criteria. The results showed, on average, a 58% ( SD = 19%) reduction in the screening workload of irrelevant records when using learning algorithms for abstract screening and an estimated time savings of 1.66 days ( SD = 1.80). The learning algorithm random forests with sentence bidirectional encoder representations from transformers outperformed other algorithms. This finding emphasizes the importance of incorporating semantic and contextual information during feature extraction and modeling in the screening process. Furthermore, we found that 95% of all relevant abstracts within a given dataset can be retrieved using heuristic stopping rules. Specifically, an approach that stops the screening process after classifying 20% of records and consecutively classifying 5% of irrelevant papers yielded the most significant gains in terms of specificity ( M = 42%, SD = 28%). However, the performance of the heuristic stopping criteria depended on the learning algorithm used and the length and proportion of relevant papers in an abstract collection. Our study provides empirical evidence on the performance of machine learning screening algorithms for abstract screening in systematic reviews in education and educational psychology.
doi_str_mv 10.1007/s10648-024-09862-5
format Article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_108955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923591665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-5d93bb1c5c837d5f110ff3deae892e8f69a0aff1eda6a576ecbf02740330d803</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxlcIJErhBThZ4srC2F7verlFUUsqBZBID71ZjnecuErsxXaK8lC8Y71d_ty42Nb4930zmq-q3lL4QAG6j4lC28gaWFNDL1tWi2fVBRUdrzlv756XNzRQd6y9e1m9SukeAPqu4RfVr42JiN75HdkcdcwY35OvIZOVjgPGT2RBluE46qize0Cy8PpwTi6RYMkXbfbOI1mjjrP-r9PisAvR5f0xEe0HssJTdCk7QzY5jONELMs3RqeJDZFszinjUU_Ad3xw-DMR58nVcDKlFkrLUk6li9m_rl5YfUj45vd9Wd1eX90uV_X62-eb5WJdGy5lrsXQ8-2WGmEk7wZhKQVr-YAaZc9Q2rbXoK2lOOhWi65Fs7XAugY4h0ECv6zIbGue5vbKh6gVBSnYdPZCFOTdjIwx_Dhhyuo-nGKZNSnWMy562rYTxf4YhZQiWjVGV9Z8LjZqCk7NwakSnHoKTk0iPotSgf0O4z_r_6geAcQsnd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923591665</pqid></control><display><type>article</type><title>Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research</title><source>NORA - Norwegian Open Research Archives</source><source>Springer Nature - Complete Springer Journals</source><creator>Campos, Diego G. ; Fütterer, Tim ; Gfrörer, Thomas ; Lavelle-Hill, Rosa ; Murayama, Kou ; König, Lars ; Hecht, Martin ; Zitzmann, Steffen ; Scherer, Ronny</creator><creatorcontrib>Campos, Diego G. ; Fütterer, Tim ; Gfrörer, Thomas ; Lavelle-Hill, Rosa ; Murayama, Kou ; König, Lars ; Hecht, Martin ; Zitzmann, Steffen ; Scherer, Ronny</creatorcontrib><description>Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and educational psychology, and there is a lack of clear information on when researchers should stop the reviewing process. In this study, we conducted a retrospective screening simulation using 27 systematic reviews in education and educational psychology. We evaluated the sensitivity, specificity, and estimated time savings of several learning algorithms and heuristic stopping criteria. The results showed, on average, a 58% ( SD = 19%) reduction in the screening workload of irrelevant records when using learning algorithms for abstract screening and an estimated time savings of 1.66 days ( SD = 1.80). The learning algorithm random forests with sentence bidirectional encoder representations from transformers outperformed other algorithms. This finding emphasizes the importance of incorporating semantic and contextual information during feature extraction and modeling in the screening process. Furthermore, we found that 95% of all relevant abstracts within a given dataset can be retrieved using heuristic stopping rules. Specifically, an approach that stops the screening process after classifying 20% of records and consecutively classifying 5% of irrelevant papers yielded the most significant gains in terms of specificity ( M = 42%, SD = 28%). However, the performance of the heuristic stopping criteria depended on the learning algorithm used and the length and proportion of relevant papers in an abstract collection. Our study provides empirical evidence on the performance of machine learning screening algorithms for abstract screening in systematic reviews in education and educational psychology.</description><identifier>ISSN: 1040-726X</identifier><identifier>EISSN: 1573-336X</identifier><identifier>DOI: 10.1007/s10648-024-09862-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Child and School Psychology ; Comparative Analysis ; Education ; Educational Psychology ; Educational Research ; Heuristic ; Heuristics ; Language Processing ; Learning and Instruction ; Machine learning ; Mathematics ; Meta Analysis ; Resistance (Psychology) ; Review Article ; Semantics ; Systematic review</subject><ispartof>Educational psychology review, 2024-03, Vol.36 (1), p.19, Article 19</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-5d93bb1c5c837d5f110ff3deae892e8f69a0aff1eda6a576ecbf02740330d803</citedby><cites>FETCH-LOGICAL-c388t-5d93bb1c5c837d5f110ff3deae892e8f69a0aff1eda6a576ecbf02740330d803</cites><orcidid>0000-0001-5399-9557 ; 0000-0002-5168-4911 ; 0000-0002-4817-2296 ; 0009-0000-3525-771X ; 0000-0003-3630-0710 ; 0000-0002-8820-5881 ; 0000-0003-2902-9600 ; 0000-0002-1767-9828 ; 0000-0002-7595-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10648-024-09862-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10648-024-09862-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,26546,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Campos, Diego G.</creatorcontrib><creatorcontrib>Fütterer, Tim</creatorcontrib><creatorcontrib>Gfrörer, Thomas</creatorcontrib><creatorcontrib>Lavelle-Hill, Rosa</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><creatorcontrib>König, Lars</creatorcontrib><creatorcontrib>Hecht, Martin</creatorcontrib><creatorcontrib>Zitzmann, Steffen</creatorcontrib><creatorcontrib>Scherer, Ronny</creatorcontrib><title>Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research</title><title>Educational psychology review</title><addtitle>Educ Psychol Rev</addtitle><description>Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and educational psychology, and there is a lack of clear information on when researchers should stop the reviewing process. In this study, we conducted a retrospective screening simulation using 27 systematic reviews in education and educational psychology. We evaluated the sensitivity, specificity, and estimated time savings of several learning algorithms and heuristic stopping criteria. The results showed, on average, a 58% ( SD = 19%) reduction in the screening workload of irrelevant records when using learning algorithms for abstract screening and an estimated time savings of 1.66 days ( SD = 1.80). The learning algorithm random forests with sentence bidirectional encoder representations from transformers outperformed other algorithms. This finding emphasizes the importance of incorporating semantic and contextual information during feature extraction and modeling in the screening process. Furthermore, we found that 95% of all relevant abstracts within a given dataset can be retrieved using heuristic stopping rules. Specifically, an approach that stops the screening process after classifying 20% of records and consecutively classifying 5% of irrelevant papers yielded the most significant gains in terms of specificity ( M = 42%, SD = 28%). However, the performance of the heuristic stopping criteria depended on the learning algorithm used and the length and proportion of relevant papers in an abstract collection. Our study provides empirical evidence on the performance of machine learning screening algorithms for abstract screening in systematic reviews in education and educational psychology.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Child and School Psychology</subject><subject>Comparative Analysis</subject><subject>Education</subject><subject>Educational Psychology</subject><subject>Educational Research</subject><subject>Heuristic</subject><subject>Heuristics</subject><subject>Language Processing</subject><subject>Learning and Instruction</subject><subject>Machine learning</subject><subject>Mathematics</subject><subject>Meta Analysis</subject><subject>Resistance (Psychology)</subject><subject>Review Article</subject><subject>Semantics</subject><subject>Systematic review</subject><issn>1040-726X</issn><issn>1573-336X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>3HK</sourceid><recordid>eNp9kc9uEzEQxlcIJErhBThZ4srC2F7verlFUUsqBZBID71ZjnecuErsxXaK8lC8Y71d_ty42Nb4930zmq-q3lL4QAG6j4lC28gaWFNDL1tWi2fVBRUdrzlv756XNzRQd6y9e1m9SukeAPqu4RfVr42JiN75HdkcdcwY35OvIZOVjgPGT2RBluE46qize0Cy8PpwTi6RYMkXbfbOI1mjjrP-r9PisAvR5f0xEe0HssJTdCk7QzY5jONELMs3RqeJDZFszinjUU_Ad3xw-DMR58nVcDKlFkrLUk6li9m_rl5YfUj45vd9Wd1eX90uV_X62-eb5WJdGy5lrsXQ8-2WGmEk7wZhKQVr-YAaZc9Q2rbXoK2lOOhWi65Fs7XAugY4h0ECv6zIbGue5vbKh6gVBSnYdPZCFOTdjIwx_Dhhyuo-nGKZNSnWMy562rYTxf4YhZQiWjVGV9Z8LjZqCk7NwakSnHoKTk0iPotSgf0O4z_r_6geAcQsnd8</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Campos, Diego G.</creator><creator>Fütterer, Tim</creator><creator>Gfrörer, Thomas</creator><creator>Lavelle-Hill, Rosa</creator><creator>Murayama, Kou</creator><creator>König, Lars</creator><creator>Hecht, Martin</creator><creator>Zitzmann, Steffen</creator><creator>Scherer, Ronny</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-5399-9557</orcidid><orcidid>https://orcid.org/0000-0002-5168-4911</orcidid><orcidid>https://orcid.org/0000-0002-4817-2296</orcidid><orcidid>https://orcid.org/0009-0000-3525-771X</orcidid><orcidid>https://orcid.org/0000-0003-3630-0710</orcidid><orcidid>https://orcid.org/0000-0002-8820-5881</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0002-1767-9828</orcidid><orcidid>https://orcid.org/0000-0002-7595-4736</orcidid></search><sort><creationdate>20240301</creationdate><title>Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research</title><author>Campos, Diego G. ; Fütterer, Tim ; Gfrörer, Thomas ; Lavelle-Hill, Rosa ; Murayama, Kou ; König, Lars ; Hecht, Martin ; Zitzmann, Steffen ; Scherer, Ronny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-5d93bb1c5c837d5f110ff3deae892e8f69a0aff1eda6a576ecbf02740330d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Child and School Psychology</topic><topic>Comparative Analysis</topic><topic>Education</topic><topic>Educational Psychology</topic><topic>Educational Research</topic><topic>Heuristic</topic><topic>Heuristics</topic><topic>Language Processing</topic><topic>Learning and Instruction</topic><topic>Machine learning</topic><topic>Mathematics</topic><topic>Meta Analysis</topic><topic>Resistance (Psychology)</topic><topic>Review Article</topic><topic>Semantics</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, Diego G.</creatorcontrib><creatorcontrib>Fütterer, Tim</creatorcontrib><creatorcontrib>Gfrörer, Thomas</creatorcontrib><creatorcontrib>Lavelle-Hill, Rosa</creatorcontrib><creatorcontrib>Murayama, Kou</creatorcontrib><creatorcontrib>König, Lars</creatorcontrib><creatorcontrib>Hecht, Martin</creatorcontrib><creatorcontrib>Zitzmann, Steffen</creatorcontrib><creatorcontrib>Scherer, Ronny</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Educational psychology review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, Diego G.</au><au>Fütterer, Tim</au><au>Gfrörer, Thomas</au><au>Lavelle-Hill, Rosa</au><au>Murayama, Kou</au><au>König, Lars</au><au>Hecht, Martin</au><au>Zitzmann, Steffen</au><au>Scherer, Ronny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research</atitle><jtitle>Educational psychology review</jtitle><stitle>Educ Psychol Rev</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>1</issue><spage>19</spage><pages>19-</pages><artnum>19</artnum><issn>1040-726X</issn><eissn>1573-336X</eissn><abstract>Systematic reviews and meta-analyses are crucial for advancing research, yet they are time-consuming and resource-demanding. Although machine learning and natural language processing algorithms may reduce this time and these resources, their performance has not been tested in education and educational psychology, and there is a lack of clear information on when researchers should stop the reviewing process. In this study, we conducted a retrospective screening simulation using 27 systematic reviews in education and educational psychology. We evaluated the sensitivity, specificity, and estimated time savings of several learning algorithms and heuristic stopping criteria. The results showed, on average, a 58% ( SD = 19%) reduction in the screening workload of irrelevant records when using learning algorithms for abstract screening and an estimated time savings of 1.66 days ( SD = 1.80). The learning algorithm random forests with sentence bidirectional encoder representations from transformers outperformed other algorithms. This finding emphasizes the importance of incorporating semantic and contextual information during feature extraction and modeling in the screening process. Furthermore, we found that 95% of all relevant abstracts within a given dataset can be retrieved using heuristic stopping rules. Specifically, an approach that stops the screening process after classifying 20% of records and consecutively classifying 5% of irrelevant papers yielded the most significant gains in terms of specificity ( M = 42%, SD = 28%). However, the performance of the heuristic stopping criteria depended on the learning algorithm used and the length and proportion of relevant papers in an abstract collection. Our study provides empirical evidence on the performance of machine learning screening algorithms for abstract screening in systematic reviews in education and educational psychology.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10648-024-09862-5</doi><orcidid>https://orcid.org/0000-0001-5399-9557</orcidid><orcidid>https://orcid.org/0000-0002-5168-4911</orcidid><orcidid>https://orcid.org/0000-0002-4817-2296</orcidid><orcidid>https://orcid.org/0009-0000-3525-771X</orcidid><orcidid>https://orcid.org/0000-0003-3630-0710</orcidid><orcidid>https://orcid.org/0000-0002-8820-5881</orcidid><orcidid>https://orcid.org/0000-0003-2902-9600</orcidid><orcidid>https://orcid.org/0000-0002-1767-9828</orcidid><orcidid>https://orcid.org/0000-0002-7595-4736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-726X
ispartof Educational psychology review, 2024-03, Vol.36 (1), p.19, Article 19
issn 1040-726X
1573-336X
language eng
recordid cdi_cristin_nora_10852_108955
source NORA - Norwegian Open Research Archives; Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial Intelligence
Child and School Psychology
Comparative Analysis
Education
Educational Psychology
Educational Research
Heuristic
Heuristics
Language Processing
Learning and Instruction
Machine learning
Mathematics
Meta Analysis
Resistance (Psychology)
Review Article
Semantics
Systematic review
title Screening Smarter, Not Harder: A Comparative Analysis of Machine Learning Screening Algorithms and Heuristic Stopping Criteria for Systematic Reviews in Educational Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20Smarter,%20Not%20Harder:%20A%20Comparative%20Analysis%20of%20Machine%20Learning%20Screening%20Algorithms%20and%20Heuristic%20Stopping%20Criteria%20for%20Systematic%20Reviews%20in%20Educational%20Research&rft.jtitle=Educational%20psychology%20review&rft.au=Campos,%20Diego%20G.&rft.date=2024-03-01&rft.volume=36&rft.issue=1&rft.spage=19&rft.pages=19-&rft.artnum=19&rft.issn=1040-726X&rft.eissn=1573-336X&rft_id=info:doi/10.1007/s10648-024-09862-5&rft_dat=%3Cproquest_crist%3E2923591665%3C/proquest_crist%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923591665&rft_id=info:pmid/&rfr_iscdi=true